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EXECUTIVE SUMMARY 

The dynamic interaction of vehicles and bridges results in live loads being induced into bridges 

that are greater than the vehicle’s static weight. Consideration of this phenomena has been 

included in the American Association of State Highway Transportation Official (AASHTO) 

Bridge Design Specifications for many years. While the specifications have been modified over 

the years, questions remain about how much of an effect dynamic interaction plays.  

In recognition of this interaction, the Iowa Department of Transportation (DOT) currently 

requires that, in some instances, permitted trucks slow to five miles per hour and span the 

roadway centerline when crossing bridges. Such a slowing is consistent with current 

specifications, which indicate that a lower dynamic impact factor may then be used for permitted 

vehicles. The positive effect of this is that larger loads may be allowed to cross Iowa’s bridges.  

However, this practice has other negative consequences. For example, the reduction in speed 

increases the potential for crashes, uses additional fuel, and, in some cases, may be downright 

impractical for bridges with high traffic volumes. In addition, the reduction in speed can have an 

impact on the orderly flow of traffic. There is a need to evaluate the Iowa DOT policy and 

perhaps develop updated guidelines to refine current practice related to bridge-vehicle 

interaction. 

The primary objective of this work was to provide information and guidance on the allowable 

speeds for trucks, and permitted vehicles and loads in particular, on bridges.  

A field test program was implemented on five bridges (two steel girder, two pre-stressed 

concrete girder, and one slab) to investigate the dynamic response of bridges due to vehicle 

loadings. The important factors taken into account during the field tests included vehicle speed, 

entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, or semi-

truck), and bridge geometric characteristics (i.e., long-span or short-span). These were the three 

entrance conditions that the researchers used: As-is and also Level 1 and Level 2, which 

simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between 

the bridge end and approach slab and directly next to the joint, respectively.  

The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) 

for all gauges installed on each bridge under the different loading scenarios. Based on the 

calculated DIFs and the change trends for the associated important factors, the conclusions were 

as follows: 

 The DIF increases with the increase of truck speed, entrance condition level, and bridge span 

length.  

 For all investigated bridges, under Level 1 and Level 2 entrance conditions, the DIFs 

exceeded 0.3; and under the As-is entrance condition, the DIFs were less than 0.3 for the 

steel and concrete girder bridges and less than 0.1 for the concrete slab bridges. 



x 

 The empty dump truck induced the greatest impact factors, followed by the full dump truck 

and then the semi-truck. 

 To limit the DIF to no more than 0.1, for all bridge types with entrance conditions similar to 

those tested in this study, the allowable truck speeds are 30 mph for As-is and crawl for 

Level 1 and Level 2. 

 The researchers recommend that currently collected road roughness information be examined 

for use as an indicator of entrance condition. If successful, the international roughness index 

(IRI) data could then be used to determine the speed limitation to put in place as well as 

which DIF values to use in permitting analysis. 

 Furthermore, the long-term bridge monitoring systems installed on Interstate 80 should be 

used to study impact factors and stress levels for actual permitted vehicles. Utilizing these 

data will provide the best information as to what level permitted vehicles traveling at 

highway speeds induce dynamic effects in bridges. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

It is widely accepted that the dynamic interaction of vehicles and bridges can sometimes result in 

live loads being induced that are greater than the vehicle’s static weight. In fact, consideration of 

this phenomena has been included in the American Association of State Highway Transportation 

Official (AASHTO) Bridge Design Specifications for many years. While the specifications have 

been modified over the years, questions remain about how much of an effect dynamic interaction 

plays.  

In recognition of this interaction, the Iowa Department of Transportation (DOT) currently 

requires that, in some instances, permitted trucks slow to five miles per hour and span the 

roadway centerline when crossing a bridge. Such a slowing is consistent with current 

specifications, which indicate that a lower dynamic impact factor may then be used for permitted 

vehicles. The positive effect of this is that larger loads may be allowed to cross Iowa’s bridges.  

However, this practice has other negative consequences. For example, the reduction in speed 

increases the potential for crashes, uses additional fuel, and, in some cases, may be downright 

impractical for bridges with high traffic volumes. In addition, the reduction in speed can have an 

impact on the orderly flow of traffic. There is a need to evaluate the Iowa DOT policy and 

perhaps develop updated guidelines to refine current practice related to bridge-vehicle 

interaction. 

1.2 Objective and Scope 

The main objective of this work was to provide information and guidance on allowable speeds 

for trucks, and permitted vehicles and loads in particular, on bridges. The research needed to take 

into account the many factors that affect the dynamic response of a bridge under vehicular traffic 

including vehicle speed, vehicle characteristics, bridge dynamic characteristics, and roughness of 

the bridge approach. To achieve the project goal, a field test program was developed to 

investigate the influence of the different factors on the dynamic response of bridges, and the 

field-measured data were then analyzed to draw conclusions with respect to the dynamic impact 

factor (DIF) for bridges. Three types of common Iowa bridges (i.e., steel girder, pre-stressed 

concrete girder, and concrete slab) were selected for field testing to facilitate the development of 

conclusions from this study. 

1.3 Work Plan 

The following general tasks were completed during this study. It should be noted that it was the 

collection of information that led to the development of the final study conclusions. As noted 

above, understanding bridge/vehicle interaction is a very complex topic that has resulted in an 

ever-evolving set of codified provisions.  
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Task 1 – Literature Review 

During Task 1 a brief literature search and review was conducted to investigate other work 

related to DIFs for bridges. Of special interest was previous work related to the establishment of 

DIFs for permitted loads and recommendations for limiting permitted vehicle speeds when 

crossing bridges. 

Task 2 – Analysis of Factors Influencing Dynamic Impact Factors 

To provide information and guidance on recommended dynamic impact factors and allowable 

permitted vehicle speeds, field testing was conducted on five bridges in Iowa. During testing, the 

researchers installed instrumentation on each bridge and then monitored as a series of trucks 

crossed over the bridge. The researchers calculated DIFs by comparing the high speed results to 

those obtained from testing at low (crawl) speeds. Five different factors were considered: bridge 

type, entrance condition, span length, truck type, and speed. 

Task 3 – Documentation and Information Dissemination 

The work completed during this project was summarized in this final report, which has five 

chapters.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Impact Factor Definition 

Vehicles exert a dynamic response on bridges. This is caused by vibration of the traveling 

vehicle, which causes the vehicle mass to interact, in a complex manner, with the bridge. This 

dynamic response must be included in the design, as it often produces greater live load moments 

and shears than the static response alone. To quantify the dynamic live load response, 

specifications make use of the so called dynamic impact factor (IM). The IM can be determined 

as follows: 

𝐼𝑀 =  
𝑅𝑑𝑦𝑛−𝑅𝑠𝑡𝑎

𝑅𝑠𝑡𝑎
 (1) 

where, Rdyn and Rsta are the maximum dynamic and static responses, respectively, regardless of 

whether the two responses occur with the truck at the same longitudinal position (Deng et al. 

2014). The IM is also often times referred to as the dynamic load allowance (DLA).  

According to the AASHTO LRFD Bridge Design Specifications, the dynamic load allowance (IM) 

is additionally applied to the static wheel load for taking into account wheel load impact for 

moving vehicles. For strength designs of most bridge components (except for deck joints), an IM 

of 0.33 should be applied (AASHTO 2010). 

2.2 Previous Research Findings 

Several studies of this nature have been performed in the past. A brief summary of a collection of 

these studies in provided in this section. 

Deng et al. (2014) conducted a large-scale literature review on the use of DIFs in several 

countries. They found that each country’s bridge code specifies the calculation of impact factors 

in slightly different ways, in terms of span length, flexural mode frequencies, load 

configurations, and vehicle suspension, among others. They also reviewed parametric studies on 

the calculation of IM.  

The Deng study showed that road surface condition has a large influence on the DLA. The 

authors also determined that vehicle speed is an important factor, but the direct relationship to 

IM remains unclear. A third conclusion was that IMs decrease with increasing vehicle weights, 

derived from the fact that greater static strains tend to yield smaller increases in dynamic strains 

and, hence, smaller IMs (Deng et al. 2014). 

Wekezer and Taft (2011) conducted a study that aimed to produce dynamic loading data—in 

order to better understand dynamic impact factors—without having to carry out numerous, 

expensive field tests. Three prestressed reinforced concrete bridges were selected for physical 

tests to obtain a base understanding of the behavior of bridges under heavy dynamic loads. The 

researchers conducted both static and dynamic tests (at 48 and 80 km/hr). From the data, they 
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were able to develop finite element (FE) models of both the truck and the bridge. The FE models 

enabled them to determine several factors that produce relatively large dynamic load allowance 

factor values: surface imperfections, the “hammering effect” produced by loose cargo in a 

vehicle, and vehicle suspension (Wekezer and Taft 2011). 

Caprani (2013) studied the dynamic effects of free-flow and congested traffic. By way of a 

critical traffic index, the author found that the dynamic amplification factor is very sensitive to 

the model used, and congested or free-flow traffic may be the controlling factor on either short- 

or long-span bridges (Caprani, 2013). 

The Florida Department of Transportation (FDOT) sponsored a large-scale study on impact 

factors for permitted vehicles (Wekezer et al. 2008). The researchers developed FE models of a 

tractor-trailer and a crane. These models were then validated and used for analysis of dynamic 

loading on bridges. The results from the analytical study correlated well with those obtained 

from a physical test on an actual bridge.  

With these models, the researchers determined that impact factors are significantly affected by 

the vehicle’s suspension system. The researchers found that heavy vehicles with stiff suspension 

systems tended to create higher IMs. The impact factor can be further increased by the presence 

of loose cargo on the vehicle and by vehicle vibration caused by road surface conditions 

(Wekezer et al. 2008). 

Szurgott et al. (2011) looked at the dynamic response of two tractor-trailer systems and a 

midsized crane crossing speed bumps on a bridge in Northwest Florida. The researchers 

concluded that surface imperfections, vehicle suspension, and vehicle wheelbase all play a 

significant role in the development of dynamic effects. They also suggest that modern vehicle 

suspensions are relatively effective tools for controlling dynamic impact. Similarly, vibrations 

can also be controlled by evenly distributing the load over multiple axles (Szurgott et al. 2011).  
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CHAPTER 3 FIELD TESTING 

Field testing was conducted to investigate the dynamic effects on one concrete slab, two steel 

girder, and two prestressed concrete girder bridges in Iowa.  

During testing, the researchers installed strain gauges and then collected data as a series of trucks 

crossed over each bridge. Important factors considered during the field tests included vehicle 

speed, vehicle characteristics, bridge characteristics, and roughness of the bridge approach.  

3.1 Factors and Loading Scenarios 

In view of the influence of important factors on the dynamic response of a bridge, these five 

different factors were considered during field testing: bridge type, entrance condition, span 

length, truck type, and speed. The steel girder and prestressed concrete girder bridges either had 

short or long maximum spans. This was because long span bridges are more flexible under the 

dynamic vehicle loading and have lower dynamic effects compared to short span bridges.  

Basic information about the five selected bridges is shown in Table 3.1. Additional details about 

each bridge are presented later. 

Table 3.1 Bridges selected 

Bridge Type 

Bridge  

Number 

Number  

of Spans 

Maximum  

Span Length 

Concrete slab 30790 1 30  

Steel girder 23370 4 85 (short) 

600770 4 180 (long) 

Prestressed  

concrete girder 

40320 3 50 (short) 

608580 2 140 (long) 

 

To simulate rough entrance conditions (due to tilting of the approach slab, failed corbel, etc.), 

often times referred to as the bump at the end of the bridge, three types of entrance conditions 

were used during testing: As-is (or Level 0), Level 1, and Level 2. The Level 1 and Level 2 

entrance conditions were simulated by placing a timber ramp 10 feet away from the joint and 

directly next to the joint, respectively. Figure 3.1 illustrates the Level 1 and Level 2 conditions 

with the variable, d, equal to 10 ft and 0 ft, respectively.  
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Dimensions of the ramp 

 
Level 1 and Level 2 ramp distances from joint 

Figure 3.1 Entrance conditions 

Three types of test vehicles were utilized: empty dump truck, full dump truck, and semi-truck, 

with typical examples shown in Figure 3.2.  

    
 Dump truck Semi-truck 

Figure 3.2 Field test trucks 

Each test vehicle crossed each of the three entrance conditions at a crawl speed, 10 mph, 20 mph, 

30 mph, and 50 mph. One passage was conducted for each type of loading scenario. This 

resulted in a total of 45 loading scenarios (see Table 3.2), which were then used to investigate the 

influence of the different factors on DIF levels. 
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Table 3.2 Field testing bridge loading scenarios 

 

Factors 

Total Loading  

Scenarios 

Entrance  

condition (3) Truck type (3) Speed (5) Load type (1) 

Considered  

variations 

(1) Level 0 

(2) Level 1 

(3) Level 2 

(1) Empty dump truck 

(2) Full dump truck 

(3) Semi-truck 

(1) Crawl 

(2) 10 mph 

(3) 20 mph 

(4) 30 mph 

(5) 50 mph 

(1) Single Lane 3 × 3 × 5 × 1 = 45  

Level 0 = Entrance condition as it currently exists (As-is condition) 

Level 1 = Simulated by placing a timber ramp 10 ft away from the joint 

Level 2 = Simulated by placing a timber ramp directly next to the joint 

3.2 Bridge Descriptions and Instrumentation 

Five bridges were tested in this study: one concrete slab bridge (30790), two steel girder bridges 

(23370 and 600770), and two prestressed concrete girder bridges (40320 and 608580). This 

section contains descriptions of each bridge, the instrumentation scheme, as well as the 

characteristics of the three trucks used for each bridge. 

3.2.1 Concrete Slab Bridge 30790 

Bridge 30790 is a single-span concrete slab bridge with a span length of 30 ft. Figure 3.3(a) and 

Figure 3.3(b) show the bridge and a general view of the location of the installed strain gauges at 

mid-span, respectively. As shown in Figure 3.3(c), the test trucks crossed the bridge in the east 

lane driving from the south to north.  
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a) View 

 

 
b) Strain gauge locations at mid-span 

 
c) Travel lane 

Figure 3.3 Concrete slab Bridge 30790 

Figure 3.4 illustrates pertinent information about the geometry of each test truck. 

Concrete strain gauge 

West East 
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Empty and full dump truck 

 
Semi-truck 

Figure 3.4. Trucks on concrete slab Bridge 30790 

3.2.2 Short-Span Steel Girder Bridge 23370 

Bridge 23370 is a continuous welded steel girder bridge with four girders and four spans, as 

shown in Figure 3.5(a). The lengths of the two center spans are 85 ft 6 in. and the lengths of the 

end spans are 47.5 ft 6 in. The four girders are spaced at 9 ft 4 in. center-on-center. The strain 

gauges were installed at mid-span of the south span. Figure 3.5(b) illustrates the locations of the 

installed strain gauges. As shown in Figure 3.5(c), the test trucks crossed the bridge in the east 

lane from the south to north.  
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a) View 

 

 
b) Strain gauge locations 

 

 
c) Travel lane 

Figure 3.5 Short-span steel girder Bridge 23370 

Figure 3.6 illustrates pertinent information about the geometry of each test truck.  

Strain gauge 

South span 

North span 

Truck crossed from South to North 

  West Lane                              East Lane 
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Empty dump truck 

 
Full dump truck 

 
Semi-truck 

Figure 3.6. Trucks on short-span steel girder Bridge 23370 

3.2.3 Long-Span Steel Girder Bridge 600770 

Bridge 600770 is continuous welded steel girder bridge with four spans as shown in Figure 

3.7(a). The span lengths of the four spans from the west to the east are 100 ft, 180 ft, 180 ft, and 

115 ft. The four girders are spaced at 10 ft 0 in. on center. Figure 3.7(b) illustrates the location of 

the installed strain gauges on the girder bottom flanges at mid-span of the second west span.  
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a) View 

 

b) Strain gauge locations and travel lanes 

Figure 3.7 Long-span steel girder Bridge 600770 strain gauge locations 

Figure 3.8 illustrates pertinent information about the geometry of each test truck.  

Truck crossed from East to West 

South Lane                             North Lane 
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Empty dump truck  

 
Full dump truck 

 
Semi-truck 

Figure 3.8. Configurations of trucks on long-span steel girder Bridge 600770 

3.2.4 Short-Span Prestressed Concrete Girder Bridge 40320 

Bridge 40320 is a pretensioned, prestressed concrete girder bridge with four spans. The span 

lengths from the south to the north are 30.5 ft, 50 ft, and 30.5 ft. The eight girders are spaced at 4 

ft 3 in. on center. Figure 3.9 illustrates the locations of the installed strain gauges.  

Figure 3.10 illustrates pertinent information about the geometry of each test truck.  



14 

 

 

 

Figure 3.9 Short-span concrete girder Bridge 40320 strain gauge locations and travel lanes 

 
Empty dump truck 

 
Full dump truck 

 
Semi-truck 

Figure 3.10 Configurations of trucks on short-span concrete girder Bridge 40320 

Truck Traveled from South to North 

South Lane                             East Lane 
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3.2.5 Long-Span Prestressed Concrete Girder Bridge 608580 

Bridge 608580 is a pretensioned, prestressed concrete girder bridge with two spans as shown in 

Figure 3.11(a). The south and north spans are 140 and 111 ft, respectively. The eight girders are 

spaced at 7 ft 3 in. on center. Figure 3.11(b) illustrates the locations of the installed strain gauges 

at mid-span of the south span.  

 
a) View 

 

 

 

 
b) Strain gauge locations and travel lanes 

Figure 3.11. Long-span concrete girder Bridge 608580 strain gauge locations 

Figure 3.12 illustrates pertinent information about the geometry of each test truck.  

Truck Traveled from South to North 

South Lane                             East Lane 
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Empty and full dump truck 

 
Semi-truck 

Figure 3.12 Dump truck and semi-truck on long-span concrete girder Bridge 608580 
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CHAPTER 4 TEST RESULTS AND DISCUSSIONS 

Based on the measured strain data from all field tests on the five bridges, the researchers 

calculated DIFs by comparing the results due to a truck crossing each bridge at high speed to 

those due to the truck crossing each bridge at a crawl speed. Subsequently, the influence of the 

important factors (i.e., vehicle speed, vehicle characteristics, bridge dynamic characteristics, and 

roughness of the bridge approach) on the DIF were further studied. 

4.1 Calculations of DIFs under Different Loading Scenarios 

For each type of truck, a total of 15 test cases were conducted as summarized in Table 4.1.  

Table 4.1 Loading scenarios of field testing 

Load  

case 

Entrance  

condition Truck type Speed 

LC1 

As-is 

Empty dump 

Full dump 

Semi 

Crawl 

LC2 10 mph 

LC3 20 mph 

LC4 30 mph 

LC5 50 mph 

LC6 

Level 1 

Empty dump 

Full dump 

Semi 

Crawl 

LC7 10 mph 

LC8 20 mph 

LC9 30 mph 

LC10 50 mph 

LC11 

Level 2 

Empty dump  

Full dump 

Semi 

Crawl 

LC12 10 mph 

LC13 20 mph 

LC14 30 mph 

LC15 50 mph 

 

The crawl speed As-is load cases (LC1 for each of the three truck types) were the baselines for 

the determination of DIFs for the other cases shown in Table 4.1.  

To derive the DIF from the bridge response for each load case, the strain time histories were first 

plotted for each strain gauge to examine the general behavior. Figure 4.1 shows the time histories 

for a strain gauge being loaded by a dump truck at both 50 mph and the crawl speed for example.  
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Figure 4.1 Strain time histories for a dump truck crossing a bridge at 50 mph and at crawl 

speed for the As-is entrance condition 

The DIF was then determined by dividing the maximum strain from a higher speed test run by 

that from the crawl speed test run. For example, the DIF for the 50-mph run shown in Figure 4.1 

is equal to 22 (which was the maximum strain at 50 mph) divided by 13 (which was the 

maximum strain at the crawl speed), or 1.69. Following the same procedure, the DIFs associated 

with different speeds, entrance conditions, and truck types can be calculated (i.e., 15 load cases 

of each truck type). The measured DIFs for the five bridges under the considered loading 

scenarios are summarized in the following sections. 

4.2 DIFs for the Five Bridges 

For reference some general information for the five bridges is shown below: 

 Steel girder bridges 

o 600770: 4 spans and longest span of 180 ft  

o 23370: 4 spans and longest span of 85 ft 

 Prestressed concrete girder bridges 

o 608580: 2 spans and longest span of 140 ft 

o 40320: 3 spans and longest span of 50 ft  

 Slab bridge 

o 30790: 1 span and span length of 50 ft 

50 mph 

Crawl Speed 
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The derived DIFs for steel girder bridge 600770, steel girder bridge 23370, concrete girder 

bridge 608580, concrete girder bridge 40320, and concrete slab bridge 30790 are illustrated in 

Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6, respectively. The figures show 

relatively different results but also some similar trends. These trends include an increase of the 

DIF as the static strain decreases, speed increases, and entrance condition gets rougher. It should 

also be noted that a few strains gave extremely high DIF values due to relatively low measured 

strains.  

As shown in Figure 4.2 through Figure 4.6, the greatest DIFs are generally associated with the 

lowest measured strains and the higher strains result in lower DIFs. In light of this, the DIFs 

related to the higher strains were deemed to be the most applicable because this study was 

focused on permitted (e.g., heavy) loads, and the researchers utilized these cases for further 

analysis (which is covered in the next section). For this reason, only a small number of data were 

available for the slab bridge due to the relatively low measured responses. Note that in the case 

of the steel and concrete girder bridges, a larger number of data were available and are included 

in Figure 4.2 through Figure 4.5. 

As shown in Figure 4.2 through Figure 4.6, the DIF increases with an increase of the truck speed, 

especially for the 30 and 50 mph speeds. And, rougher entrance conditions generally resulted in 

higher DIFs. Commonly, the Level 2 entrance conditions, with the ramp placed at the joint, 

showed the highest impact factors of all the test runs; conversely, the As-is entrance conditions 

produced the lowest impact factors in most cases. However, Level 2 entrance conditions do not 

always induce the largest DIFs. 

As shown in Figure 4.2 through Figure 4.6, of all the vehicle types studied, the empty dump 

truck tends to create the highest impact factors, followed by the full dump truck and finally the 

semi-truck. This is consistent with findings in the literature that DIFs decrease with increasing 

vehicle weight. 

Figure 4.2 through Figure 4.6 indicate that the DIFs exceeded 1.3 for all of the investigated 

bridges, and especially those determined from relatively lower strains. Under the As-is entrance 

condition, the DIFs are less than 1.3 for steel and concrete girder bridges and less than 1.1 for 

slab bridges. With Level 1 and Level 2 entrance conditions, the DIFs exceeded 1.3 for all 

bridges. Figure 4.2 through Figure 4.5 indicate that the longer span bridges (600770 and 608580) 

had lower DIFs; this is likely due to the fact that the longer span bridges are more flexible. 
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Empty dump truck on long-span steel girder Bridge 600770 

 
Full dump truck on long-span steel girder Bridge 600770 
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Semi-truck on long-span steel girder Bridge 600770 

Figure 4.2 DIFs for long-span steel girder Bridge 600770 under different loading scenarios 
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Empty dump truck on short-span steel girder Bridge 23370 

 
Full dump truck on short-span steel girder Bridge 23370 
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Semi-truck on short-span steel girder Bridge 23370 

Figure 4.3 DIFs for short-span steel girder Bridge 23370 under different loading scenarios 
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Empty dump truck on long-span pre-stressed concrete girder Bridge 608580 

 
Full dump truck on long-span pre-stressed concrete girder Bridge 608580 
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Semi-truck on long-span pre-stressed concrete girder Bridge 608580 

Figure 4.4. DIFs for long-span pre-stressed concrete girder bridge 608580 under different 

loading scenarios 
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Empty dump truck on short-span pre-stressed concrete girder Bridge 40320 

 
Full dump truck on short-span pre-stressed concrete girder Bridge 40320 
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Semi-truck on short-span pre-stressed concrete girder Bridge 40320 

Figure 4.5. DIFs for short-span pre-stressed concrete girder Bridge 40320 under different 

loading scenarios 
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Empty dump truck on concrete slab Bridge 40320  

 
Full dump truck on concrete slab Bridge 40320 
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Semi-truck on slab concrete Bridge 40320 

Figure 4.6. DIFs for concrete slab Bridge 30790 under different loading scenarios 
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4.3 Recommendations for the DIF of 0.1 

The Iowa DOT currently requires that permitted trucks slow to five miles per hour and span the 

centerline when crossing select bridges. To provide guidelines on the relationship between DIFs 

and truck speed limits, the research team studied the DIFs derived from the five bridges further.  

Given that the higher strains result in more reliable DIFs, the researchers selected the DIFs due 

to the largest strains measured at each bridge to further analyze the relationship of DIFs to truck 

speed. Note that other parameters also influence the results and include entrance condition, truck 

type, bridge type, and span length. 

To study the conditions required to limit the DIF to 0.1 for the studied bridges and truck types, 

the researchers created the relationship between DIFs and truck speed as shown in Figure 4.7 

through Figure 4.11 for the five bridges. For each bridge, the researchers determined which truck 

speeds result in DIFs less than 1.1 with the three types of trucks.  

Figure 4.7 indicates that, for long-span steel girder Bridge 600770, the allowable truck speed is 

30 mph for the As-is condition, 10 mph for the Level 1 condition, and 10 mph for the Level 2 

condition.  

Figure 4.8 indicates that, for short-span steel girder Bridge 23370, the allowable truck speeds are 

30 mph, crawl, and crawl for the As-is, Level 1, and Level 2 entrance conditions, respectively.  

Figure 4.9 indicates that, for long-span concrete girder Bridge 608580, the allowable truck 

speeds are 30, 30, and 20 mph for As-is, Level 1, and Level 2 entrance conditions, respectively.  

Figure 4.10 indicates that, for short-span concrete Bridge 40320, the allowable truck speeds are 

50 mph, 10mph, and crawl for As-is, Level 1, and Level 2 entrance conditions, respectively.  

Figure 4.11 indicates that, for slab Bridge 30790, the allowable truck speeds are 50 mph, crawl, 

and crawl for As-is, Level 1, and Level 2 entrance conditions, respectively.  
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As-is 

 
Level 1 

 
Level 2 

Figure 4.7. DIFs based on largest strain in long-span steel girder Bridge 60770 
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As-is 

 
Level 1 

 
Level 2 

Figure 4.8. DIFs based on largest strain in short-span steel girder Bridge 23370 
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As-is 

 
Level 1 

 
Level 2 

Figure 4.9. DIFs based on largest strain in long-span concrete girder Bridge 608580 
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As-is 

 
Level 1 

 
Level 2 

Figure 4.10 DIFs based on largest strain in short-span concrete girder Bridge 40320 
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As-is 

 
Level 1 

 
Level 2 

Figure 4.11. DIFs based on largest strain in concrete slab Bridge 30790 
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The allowable truck speeds for bridges under different conditions are summarized in Table 4.2.  

Table 4.2 Allowable truck speeds for different conditions 

Bridge Type As-is (mph) Level 1 (mph) Level 2 (mph) 

Long Steel Bridge  

600770 

30 10 10 

Short Steel Bridge  

23370 

30 Crawl Crawl 

Long Concrete Bridge  

608580 

30 30 20 

Short Concrete Bridge  

40320 

50 10 Crawl 

Slab Bridge 30790 50  Crawl Crawl 

ALL 30 Crawl Crawl 

 

Based on the results shown in Table 4.2, for short steel girder bridges, the allowable truck speeds 

are 30 mph, crawl speed, and crawl speed for As-is, Level 1, and Level 2 entrance conditions, 

respectively; for short prestressed concrete girder bridges, the allowable truck speeds are 30 

mph, 10 mph, and crawl speed for As-is, Level 1, and Level 2 entrance conditions, respectively.  

4.4 Conclusions 

Based on the measured DIFs from the two steel girder bridges, two concrete girder bridges, and 

the slab bridge, the influence of various factors, including vehicle speed, roughness of the bridge 

approach, vehicle characteristics, and bridge dynamic characteristics, on DIFs are summarized as 

follows: 

 The DIFs increase as the static strain decreases and the DIFs are sensitive to low strains, and 

particularly those less than 10 microstrains, which is likely due to the measurement error, 

noise, and mathematical division. Accordingly, the DIFs related to the greater strains were 

deemed more reliable. Given the project objectives were related to permitted trucks, DIFs 

from higher strain readings were utilized for this part of the study.  

 The DIF increased with an increase of the truck speed, particularly for the 30 and 50 mph 

speeds.  

 Increased entrance condition roughness generally resulted in higher DIFs. However, the 

roughest entrance condition (Level 2, with the ramp placed at the joint) did not always induce 

the largest DIFs. With Level 1 and Level 2 entrance conditions, the DIFs exceeded 0.3 for all 

investigated bridges for truck speeds up to 50 mph. With As-is entrance conditions, the DIFs 

were less than 0.3 for the steel and concrete girder bridges and less than 0.1 for the slab 

bridge with truck speeds up 50 mph.  
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 The empty dump truck induced the greatest impact factors, followed by the full dump truck 

and then the semi-truck. 

 Longer span bridges had lower DIFs than shorter span bridges, likely due to the higher 

flexibility of longer span bridges. 

To complement the Iowa DOT policy, the researchers determined allowable speeds for each of 

the bridges where the DIFs did not exceed 0.1 as follows: 

 For the long steel girder bridge, the allowable truck speeds were 30, 10, and 10 mph for As-

is, Level 1, and Level 2 entrance conditions, respectively. For the short steel girder bridge, 

the allowable truck speeds were 30 mph, crawl speed, and crawl speed for As-is, Level 1, and 

Level 2 entrance conditions, respectively.  

 For the long concrete girder bridge, the allowable truck speeds were 30, 30, and 20 mph for 

As-is, Level 1, and Level 2 entrance conditions, respectively. For the short concrete girder 

bridge, the allowable truck speeds were 50 mph, 10mph, and crawl speed for As-is, Level 1, 

and Level 2 entrance conditions, respectively.  

 For the slab bridge, the allowable truck speeds were 50 mph, crawl speed, and crawl speed 

for As-is, Level 1, and Level 2 entrance conditions, respectively. 
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CHAPTER 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

A field test program was implemented on five bridges (two steel girder, two pre-stressed 

concrete girder, and one concrete slab) to investigate the dynamic response of bridges due to 

vehicle loadings. The important factors taken into account during the field tests included vehicle 

speed, entrance condition, vehicle characteristics (i.e., empty dump truck, full dump truck, or 

semi-truck), and bridge dynamic characteristics (i.e., long-span or short-span). Three entrance 

conditions were evaluated: As-is and also Level 1 and Level 2, which were simulated by placing 

a ramp 10 feet from the joint between the bridge end and approach slab and directly next to the 

joint, respectively.  

The researchers analyzed and utilized the collected field data to derive the DIFs for all gauges 

installed on each bridge under the different loading scenarios. Based on the calculated DIFs and 

observed trends for the associated important factors, the conclusions were as follows:  

 The DIF increases with an increase in truck speed, the level of entrance conditions, and the 

bridge span length.  

 For all investigated bridges, with Level 1 and Level 2 entrance conditions, the DIFs exceeded 

0.3; and, with As-is entrance conditions, the DIFs were less than 0.3 for the steel and 

concrete girder bridges and less than 0.1 for the slab bridge. 

 The empty dump truck induced the greatest impact factors, followed by the full dump truck 

and then the semi-truck. 

5.2 Recommendations 

In order to limit the DIF to 0.1 for steel, concrete, and slab bridges subject to permitted loads, the 

allowable truck speeds are 30 mph for bridges with As-is entrance conditions similar to those 

tested and crawl for bridges with Level 1 and Level 2 entrance conditions similar to those tested..  

The researchers recommend that currently collected road roughness information be examined for 

use as an indicator of entrance condition. If successful, the international roughness index (IRI) 

data could then be used to determine the speed limitation to put in place as well as which DIF 

values to use in permitting analysis. 

5.3 Future Work 

From this study, the researchers found that heavier trucks induce greater strains in bridges on 

which the measurement error, noise, and mathematical division have less impact. In the future, 

additional field tests can be conducted using heavier trucks (i.e., the truck weight close to the 

AASHTO design truck) to obtain more realistic DIFs for design or rating purposes. 
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Furthermore, the long-term bridge monitoring systems installed on Interstate 80 should be used 

to study impact factors and stress levels for actual permitted vehicles. Utilizing these data will 

provide the best information as to what level permitted vehicles traveling at highway speeds 

induce dynamic effects in bridges. 
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