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INTRODUCTION 

For years, specifications have focused on the water to cement ratio (w/cm) and strength of 

concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An 

aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of 

gradation and availability of aggregates, has been used as the norm for a concrete pavement 

mixture.  

Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners 

to pay closer attention to all aspects of their concrete mixtures. This has led many owners to 

specify concrete mixtures with a well-graded aggregate particle distribution. This mixture tries to 

blend coarse, intermediate, and fine aggregates to pack as much aggregate in a mixture while 

minimizing the paste volume.  

Shilstone has been a longtime supporter of optimized graded concrete, and he purports that these 

mixtures have improvements in durability, strength, and resistance to abrasion and erosion. 

Shilstone believed an optimized gradation of concrete would help control the workability, 

pumpability, and response to vibration of concrete (Shilstone 1989).  

Shilstone developed a graphical method to design a concrete mixture based on his experiences 

that used volumes and gradations of the coarse, intermediate, and fine aggregates as shown in 

Figure 1. The graphical method used equations called the Coarseness Factor and Workability 

Factor (Shilstone 1990). In the Shilstone chart, different zones were thought to correspond with 

different application’s workability. 

When designing optimized concrete, many current Department of Transportations (DOTs) 

reference the middle of the Shilstone chart or Zone 2 as the best location for a mixture design. 

While this seems logical, no actual data supports this. Even Shilstone suggested that paving 

mixtures do not need the same workability as other mixtures, and therefore values with lower 

workability factors could be used (Richard 2005). Mixtures with a lower workability factor are 

located near the bottom of the Shilstone chart. 
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Figure 1. Shilstone chart 

Coarseness Factor (CF) = (Q/R)*100 

Workability Factor (WF) = W + (2.5(C-564)/94) 

Q= cumulative % retained on the 3/8 sieve 

R= cumulative % retained on the no. 8 sieve 

W= % passing the no. 8 sieve 

C= cementitious material content in lb/yd³ 

Compass is a mixture proportioning software developed by the Transtec Group for the Federal 

Highway Administration (FHWA), which uses data from sieve analysis and specific gravities in 

packing models to estimate the voids content (The Transtec Group 2004). Conventional wisdom 

says that by reducing the voids in the mixture, the designer is also reducing the volume of paste 

that is needed. The Toufar method was used in this research because the batch proportions were 

found to be the most reasonable when compared to the other two packing methods.  

In general, workability has many different variables that are independent of gradation, such as 

paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the 

properties of aggregates affect the workability of concrete is needed.  

The design of concrete mixtures is rarely controlled by the strength of the mixture. Instead, 

mixtures are designed to have a certain workability that matches the construction technique used 

for the placement. For a concrete pavement, a slip form paver uses vibrators to consolidate a low 

slump concrete that extrudes out of the back of the machine. While the slump test (ASTM C 143) 

has been the most common technique to evaluate the workability of a mixture, it fails to be 

sensitive to changes in the mixture at very low levels of workability. Paving concrete must be 
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able to be placed and consolidated by the paver and not lose its edge as it leaves the paver. The 

best way to evaluate the performance of a mixture is to use a paver with the material. 

Unfortunately, no current lab test exists to evaluate the ability to place and consolidate a 

pavement mixture. Since a paver uses a vibrator as the focal point of consolidation, a test to 

evaluate the response of a mixture to a vibrator has been developed and is presented. The 

research team realizes that the developed test may not truly replicate the complicated processes 

of a concrete paver, but they feel that this test does give an indication of the mixture’s response 

to vibration.  

MATERIALS 

The river rock and manufactured sand were from Texas and the crushed limestone and river sand 

were from Oklahoma. Table 1 gives a coarse and fine aggregate description.  

A sieve analysis for each of the aggregates was completed in accordance with ASTM C 136. 

Each of the aggregates has a maximum nominal aggregate size, as shown in Table 2.  

Absorption and specific gravity of each aggregate followed ASTM C 127 for a coarse aggregate 

or ASTM C 128 for a fine aggregate. In Table 2 and Figure 2, the properties and sieve analysis 

of each aggregate are provided.  

The lignosulfonate mid-range WR met ASTM C 494. All the concrete mixtures described in this 

paper were prepared using a Type 1 cement that meets the requirements of ASTM C 150. The 

oxide analysis is shown below in Table 3. No fly ash was used in the testing. 
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Table 1. Aggregate description 

Aggregate Photo of Aggregate Description 

Crushed 

Limestone 

 

Combination of low and high sphericity 

with a mid-angularity 

River Gravel 

 

Combination high and low sphericity 

with a well-rounded angularity 

River Sand 

 

Fines with very few intermediate 

particles 

Manufactured 

Sand 

 

Angular fines with intermediate 

particles 
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Table 2. Properties and sieve analysis of each aggregate type 

 

*note: limestone was crushed limestone and man sand was manufactured sand 

 

    Aggregate Type 

    

1.5 in. Nominal Max 
Coarse 

3/4 in. Nominal Max 
Coarse 

3/8 in. Intermediate Fine 

    Limestone* 
River 
Rock Limestone* 

River 
Rock Limestone* 

River 
Rock 

River 
Sand 

Man 
Sand* 

P
ro

p
er

ti
es

 Fineness Modulus 5.71 3.32 3.32 3.76 5.92 5.81 2.55 2.94 

Bulk Specific 
Gravity (SSD) 2.74 2.64 2.70 2.65 2.72 2.62 2.65 2.63 

Absorption(%) 0.45 1.55 0.66 1.26 0.58 1.95 0.55 0.70 

P
e

rc
en

t 
P

as
si

n
g 

th
e 

Si
ev

e 
N

u
m

b
er

 1.5 in. 95.5 96.8 100 100 100 100 100 100 

1 in. 28.1 59.5 100 96.2 100 100 100 100 

3/4 in. 5.2 49.0 94.4 77.5 100 100 100 100 

1/2 in. 0.3 30.6 48.2 36.3 100 100 100 100 

3/8 in. 0.1 18.1 22.8 13.5 93.3 99.8 97.5 100 

#4 0.1 4.6 3.1 0.2 11.3 17.6 96.7 91.8 

#8 0 3.2 0.0 0.0 1.5 0.7 95.0 82.7 

#16 0 0 0 0 0.7 0.2 83.0 74.6 

#30 0 0 0 0 0.5 0.1 52.7 56.7 

#50 0 0 0 0 0.5 0.1 17.2 12.4 

#100 0 0 0 0 0.3 0.1 3.3 2.4 

Pan 0 0 0 0 0 0 0 0 
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Figure 2. Sieve analysis for each aggregate type 
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Table 3. Cement oxide analysis: Type 1 cement 

 

Mixture Design 

Each mixture had the equivalent of five sacks (470 lbs) of cement per cubic yard of concrete and 

211.5 lbs of water. The w/cm was held constant at 0.45 and therefore the paste content at 7.03 

ft³/yd³, or 26% of the mixture’s volume.  

Each aggregate pair was evaluated using five different gradations. These included combinations 

that were at the center and bottom center of the Shilstone chart, with minimum voids contents as 

determined by the Toufar method within Compass (The Transtec Group 2004), a mixture close 

to the power 45 line, and mixture with 60% of the largest aggregate size and 40% of the fine 

aggregate size.  

Table 4 gives a summary of the gradations. Figure 2 shows a comparison of the gradations of 

individual aggregates. In Figures 3 through 10, a comparison is made of the gradations for the 

individual aggregates and the mixtures investigated. A separate figure is created for each 

aggregate combination investigated.  

These experiments were designed to intentionally hold the paste constant and vary the gradations 

of the mixtures. This allowed the impact of aggregate gradations on the workability and response 

to vibration, as well as the strength of the mixtures to be investigated. This will allow different 

methods of aggregate gradation design to be directly compared.  

Table 4. Gradation description. 

Gradation Description 

Middle of 

Shilstone 

Located in the middle of the Shilstone chart in Zone 2 as shown in Figure1. 

The middle of Shilstone has a coarseness factor of 60 and a workability of 

35.  

Bottom of 

Shilstone 

As shown in Figure 1 with the coarseness factor of 60 and workability of 

30, the bottom middle is located in Zone 2 on the Shilstone chart.  

60% CA, 40% 

FA 

With no intermediate aggregate added, the gradation uses 60% of coarse 

aggregate and 40% of the fine aggregate by volume.  

Power 45 Gradation follows the power 45 line. 

Minimum Voids 
The gradation that produces the minimum voids content as per the Toufar 

Method implemented by Compass.  

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O C3S C2S C3A C4AF 

21.1% 4.7% 2.6% 62.1% 2.4% 3.2% 0.21% 0.34% 56.7% 17.8% 8.2% 7.8% 
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Figure 3. Sieve analysis for 3/4 in. crushed limestone and river sand 
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Figure 4. Sieve analysis for 3/4 in. river rock and river sand 
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Figure 5. Sieve analysis for 3/4 in. crushed limestone and manufactured sand 
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Figure 6. Sieve analysis for 3/4 in. river rock and manufactured sand 
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Figure 7. Sieve analysis for 1.5 in. crushed limestone and river sand 
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Figure 8. Sieve analysis for 1.5 in. river rock and river sand 
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Figure 9. Sieve analysis for 1.5 in. crushed limestone and manufactured sand 
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Figure 10. Sieve analysis for 1.5 in. river rock and manufactured sand 
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Concrete Mixture and Testing Procedures 

Aggregates are collected from outside storage piles and brought into a temperature-controlled 

laboratory room at 73°F (23°C) for at least 24 hours before mixing. Aggregates were placed in a 

mixing drum and spun, and a representative sample was taken for a moisture correction. At the 

time of mixing, all aggregate was loaded into the mixer along with approximately two-thirds of 

the mixing water. This combination was mixed for three minutes to allow the aggregates to 

approach the saturated surface dry (SSD) condition and ensure that the aggregates were evenly 

distributed. 

Next, the cement and the remaining water was added and mixed for three minutes. The resulting 

mixture rested for two minutes while the sides of the mixing drum were scraped. After the rest 

period, the mixer was turned on and mixed for three minutes. The initial testing of the mixture 

included air content (ASTM C 231), slump (ASTM C 143), unit weight (ASTM C 138), and a 

novel test method to examine the response to vibration called the box test.  

Box Test 

The box test evaluated the performance of a mixture’s response to vibration. This was done by 

taking a controlled volume of concrete and measuring the amount of surface voids after 

vibration. A vibrator uses stress waves to separate air from the mixture and force the mortar into 

the voids. If the concrete has large amounts of surface voids after vibration then the mortar was 

not able to flow to this surface and the mixture was declared to be unacceptable.  

The box test used a 1/2 in. plywood base and 1 ft² sides with clamps to hold the box together. 

Figure 11 shows the different pieces of the box test.  

 

Figure 11. Items in the box test 
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Placed on the base, a 1 ft³ wooden formed box was constructed and held together by clamps as 

shown in Figure 12. Concrete was uniformly hand-scooped without consolidation into the box up 

to a height of 9.5 in. Care was taken to not consolidate the concrete during placement.  

  

Figure 12. Box dimensions 

A handheld 1 in. head WYCO model number 922A electric vibrator with a measured speed of 

8000 vibrations per minute was used to consolidate the concrete by inserting it at the center of 

the box. The vibrator was lowered over three seconds to the bottom of the box and then raised 

over three seconds.  

The clamps were removed from the side of the box and the side walls were removed. Each step 

of the process was shown in Table 5. 
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Table 5. Box test 

  

Step 1 Step 2 

Construct box and place clamps tightly 

around box. Hand scoop mixture into box 

until the concrete is 9.5 in. 

Vibrate downward for 3 seconds and 

upward for 3 seconds. 

  

Step 3 Step 4 

Remove vibrator. 

After removing clamps and the forms, 

inspect the sides for surface voids and edge 

slumping. 

 

The response of the mixture to vibration was evaluated by comparing the sides of the box to the 

ranking scale in Table 6. An average score was found for the box test. A ranking of 2 was 

determined to be sufficient to pass the box test.  

Observations were recorded about the sphere of influence of vibrator and any imperfections left 

on the surface by the vibrator. Figure 13 shows where the vibrator gave no sphere of influence 

and left a hole. Figure 14 shows that the vibrator had a 5 in. radius sphere of influence that left 

the corners unconsolidated. In Figure 15, the vibrator had a sphere of influence that reached the 

entire concrete sample, and the edges were straight. 

9.5

” 
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Table 6. Box test ranking scale 

  
4 3 

Sides held an edge, but had over 

50% overall amounts of surface 

voids. 

Sides had a between 30-50% 

overall surface voids. Corners 

were not consolidated. 

  

2 1 

Sides and corners had between 10 

and 30% overall amounts of 

surface voids. 

Sides had less than 10% overall 

amount of surface voids. 

 

 

Figure 13. No sphere of influence 
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Figure 14. Sphere of influence almost to corners 

 

Figure 15. Mixture passed the box test 

If the concrete was found to fail the box test, the material used in the slump test and the box test 

was placed back into the mixer. The material used to test the air content was discarded as water 

was added. The mixer was turned on and charged with a mid-range water-reducing agent and 

mixed for three minutes. By adding the mid-range, the viscosity of the mixture was decreased, or 

the workability was increased.  

After mixing the slump, unit weight and box test was conducted again. The air content was not 

tested again until the mixture was found to pass the box test. This was done to hold the mixture 

volume constant throughout the addition of the WR. If the box test failed again, slump, unit 

weight, and box test material was placed back into the mixer, charged with more mid-range 

water-reducing agent, and mixed for three minutes.  

The process of adding water-reducing agent, testing slump, unit weight, and box test continued 

until the mixture passed the box test. Since the mixture has a limited time frame before initial set, 

if the mixture exhibited a loss in slump, or surpassed 45 minutes from initial mixing, the mixture 

was discarded.  

At the point of the process where the box test passed, the air content was tested. The slump and 

box test material was placed back into the mixer and agitated for 30 seconds. Finally, 4x8” 
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concrete specimens were made according to ASTM C 192. The concrete specimens were tested 

at 7- and 28-day strength using ASTM C39 and with the surface resistivity meter or Wenner 

probe. On the longitudinal side of the saturated cylinder, the Wenner probe measured the 

resistivity at eight different places. During the testing, the Wenner probe broke causing some 

data not to be collected.  

Varying the WR dosage of the mixture until a mixture is able to show satisfactory performance 

in the box test provided a quantitative method to compare the different aggregate gradations. 

Since more WR was required in certain mixtures, these mixtures would not be as desirable as 

mixtures that did not need as high a dosage of WR. This was a useful method of comparison for 

this research.  

Many of the admixture dosages investigated were higher than would be recommended in 

practice. This suggests that the paste content should be increased in these mixtures. This was not 

done as it was not the goal of this work to develop concrete mixtures, but instead to compare the 

performances of different aggregate gradations with a constant paste content.  

RESULTS 

Tables 7 and 8 are a compilation of the results from the fresh and harden properties of the 

mixtures completed. Table 9 compares the electrical resistivity of each mixture to the WR 

dosage to pass the box test. Figures 16 through 23 compare the Shilstone chart to each mixture’s 

WR dosage required to pass the box test. Figures 24 through 28 compare the WR dosage needed 

to pass the box test, compressive strength at 7 and 28 days, and the slump of the mixture when it 

passed the box test for the different investigated gradations. 
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Table 7. Results of the mixtures with 3/4 in. maximum nominal aggregates 

Aggregate 
Coarse            

Fine

Shilstone 

Center

Shilstone 

Bottom 60/40 Power 45

Compass 

Min Voids

WR (oz/cwt) 20.8 19.2 21.3 85.9 31.0
Slump (inches) 0.50 1.75 1.00 0.50 1.25
7 day fc (psi) 5160 4270 5080 6240 5040

28 day fc (psi) 5820 5370 5930 8250 6340
Air Content 2.5% 2.4% 3.2% 2.7% 2.9%

Unit Wt 152.1 150.6 150.2 151.1 152.6

Coarse 1553 1684 2015 1100 1561
Intermediate 508 554 0 907 656

Fine 1280 1107 1321 1338 1129
CF WF 60   35 60   30 76.3   40 46.2   36.9 56.7   30.7

WR (oz/cwt) 15.3 17.9 17.2 18.6 6.7
Slump (inches) 1.75 2.00 1.75 2.25 1.25

7 day fc (psi) 4110 4710 4250 4850 4390
28 day fc (psi) 4950 5220 5020 5100 4970

Air Content 4.9% 3.4% 4.6% 3.4% 2.1%

Unit Wt 147.8 148.7 147.3 149.4 151.0
Coarse 1396 1516 1981 1427 1508

Intermediate 597 650 0 770 885
Fine 1302 1127 1321 1096 899

CF WF 60   35 60   30 85.3   35.5 55.8   29.1 54.2   23.5

WR (oz/cwt) 23.0 35.6 32.2 31.8 31.8
Slump (inches) 0.75 1.00 1.75 0.75 0.75
7 day fc (psi) 4800 4920 4250 5010 5010

28 day fc (psi) 5860 5660 5070 6140 6140
Air Content 6.8% 4.9% 8.5% 3.9% 3.9%

Unit Wt 145.3 147.1 141.5 148.2 148.2
Coarse 1627 1749 2015 1599 1599

Intermediate 236 319 0 665 665
Fine 1461 1262 1311 1075 1075

CF WF 60    35 60   30 69.1   31 52.5   25.4 52.5   25.4

WR (oz/cwt) 21.5 21.0 20.9 20.1 20.4
Slump (inches) 1.00 1.50 1.50 1.50 1.75
7 day fc (psi) 3880 3990 3870 4260 4300

28 day fc (psi) 4450 4240 4110 4550 4660
Air Content 7.8% 7.3% 8.0% 7.9% 5.0%

Unit Wt 142.6 140.5 141.3 141.8 145.8
Coarse 1438 1553 1994 1348 1584

Intermediate 370 454 0 481 686
Fine 1478 1280 1297 1455 1016

CF WF 60  35 60  30 77.6   30.4 55.4   34.4 55.4   34.4
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Unit weight was measured in lbs/ft³ and aggregate types were measured in lbs/yd³ 
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Table 8. Results of the mixtures with 1.5 in. maximum nominal aggregates 

Aggregate 
Coarse            

Fine

Shilstone 

Center

Shilstone 

Bottom 60/40 Power 45

Compass 

Min Voids

WR (oz/cwt) 32.0 34.0 13.7 31.8 31.8

Slump (inches) 1.25 1.50 1.00 1.50 1.50
7 day fc (psi) 5420 5250 4520 4700 4700

28 day fc (psi) 5970 5470 5430 6020 6020

Air Content 3.5% 3.1% 3.7% 3.8% 3.8%
Unit Wt 150.6 151.7 149.8 148.7 148.7

Coarse 1205 1306 2046 1258 1258

Intermediate 894 972 0 736 736
Fine 1266 1092 1322 1369 1369

CF WF 60  35 60  30 98.2   25.1 65.1   26.7 65.1   26.7

WR (oz/cwt) 22.2 26.6 26.1 25.1 25.1
Slump (inches) 1.75 2.00 1.75 2.00 2.00

7 day fc (psi) 5240 5160 4630 4980 4980

28 day fc (psi) 5910 5990 5480 6070 6070
Air Content 4.8% 3.2% 4.3% 2.3% 2.3%

Unit Wt 147.8 150.0 147.6 151.2 151.2

Coarse 1470 1596 1978 1631 1596
Intermediate 522 569 0 846 569

Fine 1288 1116 1307 802 1116

CF WF 60  35 60  30 80.8   35.4 56.3   26.6 56.3   26.6

WR (oz/cwt) 27.9 20.8 20.4 31.8 31.8

Slump (inches) 1.0 1.5 1.5 1.5 1.5

7 day fc (psi) 3870 4520 4140 4600 4600

28 day fc (psi) 4300 5300 4980 6530 6530

Air Content 8.3% 5.9% 5.4% 1.8% 1.8%

Unit Wt 138.3 145.5 146.7 154.2 154.2

Coarse 1263 1356 2044 1515 1515

Intermediate 644 756 0 892 892
Fine 1443 1244 1315 961 961

CF WF 60  35 60  30 89.1   31.5 60.9   22.8 60.9   22.8

WR (oz/cwt) 19.5 19.3 21.0 19.3 25.9

Slump (inches) 1.50 2.50 1.50 2.50 1.25

7 day fc (psi) 4350 4080 4480 4080 4660

28 day fc (psi) 4930 4740 5380 5630 5630

Air Content 8.5% 3.7% 4.9% 2.3% 2.3%

Unit Wt 141.4 149.3 146.7 151.0 149.3

Coarse 1470 1596 1978 1596 1631

Intermediate 522 569 0 569 846
Fine 1288 1116 1307 1116 802

CF WF 60  35 60  30 80.8  35.5 60   30 53.8   21
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Table 9. Wenner probe and WR dosage 

Aggregate 
Coarse            

Fine

Shilstone 

Center

Shilstone 

Bottom 60/40 Power 45

Compass 

Min 

7 day Wenner 5.8 4.4 5.6 4.0 5.3

28 day Wenner 6.7 7.2 6.6 8.3 6.8

WR (oz/cwt) 20.8 19.2 21.3 85.9 31.0

7 day Wenner 5.8 5.3 6.1 5.2 5.3
28 day Wenner 6.8 6.5 6.8

WR (oz/cwt) 15.3 17.9 17.2 18.6 6.7

7 day Wenner 5.5 5.8 5.3 5.1 5.8

28 day Wenner
WR (oz/cwt) 21.5 21.0 20.9 20.1 20.4

7 day Wenner 5.6 4.7 5.8

28 day Wenner
WR (oz/cwt) 32.0 34.0 13.7 31.8 31.8

7 day Wenner 4.9 4.6 4.6 4.9 4.9

28 day Wenner
WR (oz/cwt) 22.2 26.6 26.1 25.1 25.1

7 day Wenner 5.3 5.5 4.9 5.5 5.3

28 day Wenner
WR (oz/cwt) 19.5 19.3 21.0 19.3 25.9
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Man Sand
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Figure 16. The results of the 3/4 in. crushed limestone and river sand plotted on the 

Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 

 

Figure 17. The results of the 3/4 in. river rock and river sand plotted on the Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 
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Figure 18. The results of the 1.5 in. river rock and river sand plotted on the Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 

 

Figure 19. The results of the 1.5 in. river rock and man sand plotted on the Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 
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Figure 20. The results of the 1.5 in. crushed limestone and man sand plotted on the 

Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 

 

Figure 21. The results of the 1.5 in. crushed limestone and river sand plotted on the 

Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 
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Figure 22. The results of the 3/4 in. crushed limestone and man sand plotted on the 

Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 

 

Figure 23. The results of the 3/4 in. river rock and man sand plotted on the Shilstone chart 

The numbers shown are the WR (oz/cwt) required for the mixture to pass the box test. 
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Figure 24. Gradation compared to the amount of WR to pass the box test 

Note: 3/4 in. crushed limestone and river sand with a power 45 had an 85.9 oz/cwt.  
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Figure 25. Gradation compared to slump measured when passing the box test 

Note: 3/4 in. crushed limestone and river rock using river sand had the same slump. 
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Figure 26. Gradation compared to the 7-day compressive strength 
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Figure 27. Gradation compared to the 28-day compressive strength 

Note: 3/4 in. crushed limestone and river sand with a power 45 had a 28-day compressive strength of 8250 psi. 
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DISCUSSION 

After each mixture passed the box test, the slump ranged between 0.5 in. and 2.5 in., which 

corresponds to slumps found in conventional pavement. The results from the slump and box test 

did not always correlate. Shown graphically in Figure 25, the 1.5 in. river rock and manufactured 

sand had a 2.25 in. slump, but could not pass the box test while 3/4 in. crushed limestone and 

river sand passed the box test with a 0.5 in. slump. When the same 3/4 in. crushed limestone and 

river sand was used with a gradation that matched the power 45, the mixture required 85 oz/cwt 

of WR for the mixture to pass the box test and the slump was only 0.5 in.  

It was found that different slumps were required for different aggregate gradation strategies to 

pass the box test. For example when looking at the gradations for mixtures in the middle of the 

Shilstone chart with different aggregates, the slump ranged from 0.5 in. to 1.75 in., while the WR 

dosage varied from 15.3 to 32 oz/cwt to pass the box test. 

These results reinforce that the box and slump test measure two different phenomena. While the 

box test measures the response to vibration, the slump test only measures the movement of the 

concrete downward from its own weight. Shilstone (1989) had the following to say: 

“The highly regarded slump test should be recognized for what it is: a measure of the 

 ability of a given batch of concrete to sag.”   

Depending on the application for the concrete, the slump or box test may be useful to evaluate 

the performance. For slip-formed pavement applications, we feel that the response to vibration or 

the box test is more useful. However, the slump test may be better for hand-placed mixtures.  

This non-uniform behavior between the tests is intriguing and suggests that one should not 

assume that concretes of the same slump will respond the same way to vibration and vice versa 

with mixtures that respond well to vibration. Instead, it is important to understand what 

properties of the mixture proportions, aggregate gradation, and characteristics lead to these 

differences in performance. It is clear that more work is needed.  

Looking at Figure 25, several general trends can be observed with different aggregate types. In 

order to pass the box test, the river rock required a higher slump than the crushed limestone. All 

combinations of the 1.5 in. coarse aggregate required a higher slump than the 3/4 in. coarse 

aggregate to pass the box test. 

For the aggregates and gradations investigated, the Shilstone chart was not able to predict how a 

mixture would perform in the box test. For example, in Figure 23, the five mixture gradations 

using 3/4 in. river rock and manufactured sand were in different locations on the Shilstone chart, 

but needed similar amounts of WR to pass the box test. In general, aggregate combinations in the 

middle of the Shilstone chart were able to pass the box test with the lowest slump. As shown in 

Figure 24, in five of the eight aggregate combinations there was no difference in WR required to 

pass the box test for gradations in the middle of the Shilstone chart and the mixtures with 60% 
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coarse and 40% fine aggregate. This suggests that including the intermediate aggregates in the 

concrete mixture did not have a consistent impact on the WR results of the box test. However, 

mixtures at the middle of the Shilstone chart had the ability to hold an edge, while the 60% 

coarse and 40% fine aggregate had a noticeable edge slump. 

Several gradations were separated by an aggregate weight difference of only one hundred lbs/cy, 

but performed completely different. Shown in Tables 7 and 8, the 3/4 in. crushed limestone and 

river rock gradation of minimum voids and bottom of the Shilstone chart generate very similar 

weight amounts of sand, intermediate, and coarse aggregates, but used a difference of 11.8 

oz/cwt. On the other hand, 3/4 in. river rock and manufactured sand gradation of power 45 and 

bottom of the Shilstone chart produced very similar weight amounts of sand, intermediate, and 

coarse aggregates, but required only a slight difference in WR dosage. In fact, 3/4 in. river rock 

and manufactured sand receive similar WR dosages for all the gradations.  

Useful visual observations about the ability to finish and shovel the mixtures were made during 

the sample creation, but were not easily quantified. The mixtures in the center of the Shilstone 

chart and with the 60/40 gradation were the easiest to place and finish. Also, mixtures with river 

rock flowed better in the mixer than those with crushed limestone. It should be noted that the 

power 45 with 3/4 in. river rock and sand required the least amount of WR used when compared 

to the other mixtures, as shown in Figure 24. However, this mixture was very stiff and would be 

very difficult to place and finish.  

Looking at Figure 26, the mixtures using gradations with intermediate aggregates all had a 7-day 

strength over 3800 psi. The mixtures containing 1.5 in. river rock were stronger than those with 

3/4 in. river rock. As shown in Figure 27, the minimum voids and/or power 45 had the highest 

compressive strength for each combination, while the 60/40 gradation mixtures had a 

consistently lower compressive strength. Both the middle and bottom of the Shilstone chart 

mixtures had compressive strengths that varied widely.  

After failing the box test with a WR dosage above 85 oz/cwt, the 28-day strength of the power 

45 mixture with 3/4 in. crushed limestone and river sand was higher than 8200 psi. The 

compressive strength of the mixture could be affected by the power 45 gradation or the high WR 

dosage. The extremely high dosage of WR delayed final set of the compression cylinders for five 

days. The set delay did not have an extreme impact on the 7-day compressive strength.  

The concrete’s resistance to an electric current was measured using the Wenner probe. 

Unfortunately, the Wenner probe broke during the testing time frame and was not able to be 

repaired. A new one was purchased and measurements were resumed after it arrived. Table 9 

shows the Wenner probe results of the different aggregate combinations. Neither the WR, 

gradation, nor type of rock combinations had a noticeable variation in resistance from the limited 

amount of data available.  

Using amounts more than 1200 lbs/cy of manufactured sand gave high air contents and low unit 

weights. Also, both 1.5 in. and 3/4 in. river rock and river sand combinations resulted in 4% or 
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higher air content for the Shilstone middle of box and 60/40 gradation. The cause was not found 

during this testing.  

CONCLUSIONS 

The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, 

strength, and resistivity, were investigated using mixtures in which the paste content and the 

water/cement ratio were held constant. The results showed the different aggregate proportions, 

the maximum nominal aggregate sizes, and combinations of different aggregates all impacted the 

performance in the strength, slump, and box test. Based on the data collected, the following have 

been found: 

 The location in the Shilstone chart did not correlate to the response of a concrete 

mixture to vibration. 

 Aggregate gradations in the middle of the Shilstone chart and 60/40 gradations 

consistently required the lowest dosage of WR to show satisfactory response to 

vibration.  

 Little difference between the WR dosage required for satisfactory response to 

vibration between mixtures with gradations in the middle of the Shilstone chart and 

60/40 gradation. This suggests that concrete that responds well to vibration is not 

strongly dependent on the presence of the intermediate aggregates in a mixture.  

 By using intermediate sizes in a concrete mixture, the compressive strength increases. 

 A distinct increase in the slump was observed with the majority of river rock 

compared to crushed limestone. The crushed limestone’s slump ranged from 0.5 in. to 

1.5 in., while the river rock’s slump ranged from 1 in. to 2.5 in. 

Next Steps 

Better quantitative techniques are needed to evaluate the performance of a concrete mixture for 

different applications. For this work, the ability of the mixture to be vibrated and placed by a 

paver was investigated. This was done with a novel test method created by the research team. 

This work led to many improvements in the test and sparked future work that will continue to 

improve this important need.  

The research team plans on investigating the box test by using accelerometers placed between 

the vibrator and the walls of the container. As the concrete is vibrated, the accelerometers should 

describe the rate of mortar movement. This would provide a more quantitative measurement than 

the current visual inspection of the box test. Also, the box test will be correlated with field 

performance of a slip-formed paver. These field correlations will help to better understand what 

limits should be placed on the test.  

The findings in this work showed little difference in workability for mixtures with and without 

intermediate aggregate sizes and the same paste content. This implies that specifications 

requiring a contractor to use an intermediate aggregate size will not allow a reduction in paste 
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volume over mixtures without these aggregates intentionally being added for paving mixtures if 

the goal is to find a mixture that will respond to vibration. 

Data on other ongoing research suggests that the shape and texture of aggregates play an 

important role in their response to vibration. Unfortunately, these parameters are not currently 

measured in the design of concrete mixtures. More work is ongoing.  
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