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EXECUTIVE SUMMARY 

Quality foundation layers (the natural subgrade, subbase, and embankment) are essential to 
achieving excellent pavement performance. Unfortunately, many pavements in the United States 
still fail due to inadequate foundation layers. To address this problem, a research project, 
Improving the Foundation Layers for Pavements (FHWA DTFH 61-06-H-00011 WO #18; 
FHWA TPF-5(183)), was undertaken by Iowa State University to identify, and provide guidance 
for implementing, best practices regarding foundation layer construction methods, material 
selection, in situ testing and evaluation, and performance-related designs and specifications. As 
part of the project, field studies were conducted on several in-service concrete pavements across 
the country that represented either premature failures or successful long-term pavements. A key 
aspect of each field study was to tie performance of the foundation layers to key engineering 
properties and pavement performance. In situ foundation layer performance data, as well as 
original construction data and maintenance/rehabilitation history data, were collected and 
geospatially and statistically analyzed to determine the effects of site-specific foundation layer 
construction methods, site evaluation, materials selection, design, treatments, and maintenance 
procedures on the performance of the foundation layers and of the related pavements. A 
technical report was prepared for each field study. 

Precast concrete pavement (PCP) systems are pre-fabricated concrete panels that are fabricated 
off-site, transported to project site, and placed in situ on prepared foundations after removal of 
existing pavements. PCPs can be an effective and safe repair/rehabilitation alternative to cast-in-
place pavements on projects in urban area highways with high traffic volumes where lane 
closures are a significant challenge. 

Based on these advantages and the success observed from accelerated pavement testing at a test 
site with PCP in San Bernardino, California, CalTrans opted for PCP rehabilitation over a 4-mile 
section of I-15 near Ontario, California. The rehabilitation work involved removing an existing 
pavement built in the 1970s and replacing with PCP panels. The existing pavement consisted of 
nominal 213 mm (8.4 in.) of PCC over 122 mm (4.8 in. of CTB). PCPs were placed over 1.8 
miles of the project and 34 intermittent panels. The total bid cost of the project was about $51.9 
million. PCP systems constituted approximately $4.6 million of the total construction cost. 

The rehabilitation process involved removing the old pavement, placing a new thin bedding sand 
layer was placed, placing 203 mm (8 in.) thick new PCP panels, and pumping bedding and dowel 
slot grouts. Bedding grout was pumped into precast ports for undersealing and dowel grout was 
injected to the dowel slots. 

Preliminary field testing using falling weight deflectometer (FWD) was conducted on this project 
as part of a research effort by SHRP2 R05 in early June 2010. Crack monitoring was performed 
by CalTrans several months after the construction completed and opened to traffic. The Iowa 
State University (ISU) research team was present on-site on June 28, 2010 to monitor 
construction operations and conduct field testing. Kuab FWD and dynamic cone penetrometer 
(DCP) tests were conducted on CTB layer, and FWD tests were conducted on two adjacent test 
sections consisting of old pavement and new PCP panels. 
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Following are some key findings from work performed by the SHRP2 R05 research team and 
CalTrans: 

• FWD testing was conducted by Tayabji et al. (2013a) on PCP panels constructed with 
and without bedding grout. The results showed that deflections were considerably smaller 
(3 to 5 mils) on panels where bedding grout was used. 

• The panels with only dowel-slot grouting showed more variability in surface deflections. 
• Field monitoring several months after construction showed thin hair-line cracks on 

several panels. A detailed survey was conducted on 696 panels, of which 24% were 
cracked. 

• Based on crack survey mapping and field notes during construction, it was concluded that 
the contractor’s grading practices contributed to the cracking. It was found that the 
stringline approach used to place the bedding material sometimes created high and low 
spots resulting in non-uniform support conditions. Cracks at some locations were 
attributed to opening the lane to traffic before grouting. 

The ISU research team was present on site on June 28, 2010 to monitor construction operations 
and conduct field testing. Kuab FWD and DCP tests were conducted on CTB layer, and FWD 
tests were conducted on two adjacent test sections consisting of old pavement and new PCP 
panels. Following are some key findings from the ISU testing:  

• Tests on the CTB layer indicated that the average composite modulus was about 357 MPa 
with a COV of about 17%. The average CTB layer modulus was about 7,200 MPa with a 
COV of about 42%. The average subgrade layer modulus was about 105 MPa with a 
COV of about 10%, which represented relatively stiff subgrade conditions. 

• CBR values estimated in the subgrade from DCP tests showed relatively high values 
(ranging between 30 and 100), which confirms the relatively high subgrade modulus 
values. The average R-value of the subgrade was about 45 with a COV of about 5%. 

• Statistical analysis of FWD measurement values obtained on the old and new pavement 
indicated that there was a statistically significant difference in surface deflection (D0) and 
zero-load intercept (I) values near mid-panel, but not in any of the other deflection basin 
parameters and the modulus of subgrade reaction (k) value. The D0 and I values were 
lower on the new pavement that on the old pavement. This suggests that there was 
improvement in the deflection response near the surface, which reflects better support 
conditions directly beneath the new pavement. This was also confirmed in the SHRP2 
R05 testing. Deeper improvements are not expected which is reflected in the deflection 
basin parameters. 

• There were no statistically significant differences in any of the measurement values 
obtained at the joint. The LTE values were relatively high (> 85%) at all locations. 

• The average R-value obtained from FWD testing was about 50 and was similar to the 
value obtained from FWD testing on the CTB layer (45). 
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CHAPTER 1. INTRODUCTION 

Precast concrete pavement (PCP) systems are pre-fabricated concrete panels that are fabricated 
off-site, transported to project site, and placed in situ on prepared foundation after removal of the 
existing pavement. PCPs can be an effective and safe repair/rehabilitation alternative to cast-in-
place pavements on projects in urban area highways with high traffic volumes where lane 
closures is a significant challenge. 

Based on these advantages and the success observed from accelerated pavement testing at a test 
site with PCP in San Bernardino, California, CalTrans opted for PCP rehabilitation over a 4 mile 
section of I-15 near Ontario, California. The rehabilitation work involved removing an existing 
pavement built in the 1970s and replacing with precast concrete pavement (PCP) panels. The 
existing pavement consisted of nominal 213 mm (8.4 in.) of PCC over 122 mm (4.8 in. of CTB). 
PCPs were placed over 1.8 miles of the project and 34 intermittent panels. The total bid cost of 
the project was about $51.9 million. PCP systems constituted approximately $4.6 million of the 
total construction cost. 

Preliminary field testing using a falling weight deflectometer (FWD) was conducted on this 
project as part of a research effort by SHRP2 R05 (Tayabji et al. 2013b) in early June 2010. 
Crack monitoring was performed by CalTrans several months after construction was completed 
and the road was opened to traffic. The Iowa State University (ISU) research team was present 
on-site on June 28, 2010, to monitor construction operations and conduct Kuab FWD and 
dynamic cone penetrometer testing. Both DCP and FWD tests were conducted on the CTB layer, 
and FWD tests were conducted on sections with old pavement and new PCP panels. 

FWD testing was conducted on the CTB layer to evaluate the modulus values of the CTB layer 
and the underlying subgrade layer. FWD testing on the pavement layers was conducted to 
evaluate differences in surface deflections and deflection basin parameters between the old 
pavement and the new pavement panels. 

Chapter 2 of this report presents an overview of PCP systems. Chapter 3 provides a project 
overview and results of initial field testing and the ISU testing plan. Chapter 4 summarizes the 
test methods and data analysis methods. Chapter 5 presents the results and analysis from this 
study. 
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CHAPTER 2. OVERVIEW OF PCP SYSTEMS 

Precast concrete pavement (PCP) systems consist of pre-fabricated concrete panels that are 
fabricated off-site, transported to project sites, and placed in situ on prepared foundations after 
removal of existing pavement. PCP applications include isolated repairs such as patching work, 
intersection and ramp rehabilitation, urban street rehabilitation, and rehabilitation of longer 
mainline pavement sections (Tayabji et al. 2013b). PCP construction can be an effective and safe 
repair/rehabilitation alternative to cast-in-place pavements on projects in urban area highways 
with high traffic volumes where lane closures are a significant challenge. According to Tayabji 
et al. (2013b), the specific advantages of using PCP versus cast-in-place concrete pavements 
include the following: 

• Better-quality concrete: problems related to concrete delivery or paving equipment 
operation, including poor concrete quality, concrete consolidation, and over finishing of 
the concrete surface, are eliminated. 

• Better concrete curing conditions: curing of the PCPs takes place under controlled 
conditions at the plant. 

• Minimal weather restrictions on placement: the construction season can be extended 
because PCPs can be placed in cool weather or during light rainfall. 

• Reduced delay before opening to traffic: on-site curing of the concrete is not required. As 
a result, PCPs can be installed during nighttime lane closures and be ready to be opened 
to traffic the following morning. 

• No joint raveling: Early-age failures due to late or shallow joint sawing are eliminated. 

A recent SHRP2 R05 project focused on identifying the different PCP systems and the current 
state of U.S. and international practices; evaluating performance; developing guidelines for 
selection, design, fabrication, and installation; and developing model PCP specifications (Tayabji 
et al. 2013a). As part of that project, field testing and evaluation were conducted on 16 PCP 
construction projects in the U.S., including the one discussed in this report (California I-15). 
Tayabji et al. (2013a) concluded that PCP systems are capable of performing well under traffic 
loading, and the behavior and performance of PCP systems is similar to that of the cast in place 
concrete pavements. They also indicated that constructability, durability, and performance (with 
respect to panel support conditions and load transfer at joints) are the key attributes of PCP 
system that presented concerns to users. According to Tayabji et al. (2013b), sufficient advances 
have been made on all these aspects to produce a reliable product. 

Tayabji et al. (2013a) provided a summary of technical considerations for support conditions 
when placing PCP systems. They suggested that proper seating of the panels on the base is 
critical to the design, construction, and long-term performance of the PCP systems. According to 
Tayabji et al.,  

the quality of base and bedding materials must be controlled to ensure that these materials 
provide the desired support and that the support is uniform along the length of each panel. To 
date, no serious attempts have been made to control the compaction of granular base or 
bedding materials by controlling the moisture content of these materials. It is important that 
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testing of the granular base or bedding, or both, be performed to monitor the compaction 
level. 

A bedding layer is routinely used with PCP systems to ensure uniform support under the 
panels. If a fine-grained granular bedding material is used, its thickness should be limited to 
¼ in. (6 mm). If a thicker bedding layer is necessary, then rapid-setting cementitious grout or 
flowable fill may be considered. As a general rule, any base or bedding material that would 
not be allowed during the construction of CIP concrete should not be used with a PCP 
system. 

Finally, if the opportunity does not exist to improve the base or bedding system and the 
subgrade is of marginal quality, more attention should be paid to the design of the JCP 
system. The load transfer system at transverse joints must be adequate, and the panels may 
need to be prestressed if thicker nominally reinforced panels cannot be accommodated. 
Panels of only one size (thickness) cannot be expected to meet all design needs, especially 
when marginal support conditions are encountered. (2013a, 60) 
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CHAPTER 3. PROJECT OVERVIEW AND FIELD TESTING 

Project Overview 

This project tested in this study (CalTrans EA08-472214) is located on I-15 near Ontario, 
California. The summary construction report provided by Hartog (2012) was used to develop the 
following information. 

The project limits over a total distance of about 4 miles are from State Route 60 in Riverside 
County to approximately one mile north of I-10 in San Bernardino County. The total bid cost of 
the project was about $51.9 million. PCP systems constituted approximately $4.6 million of the 
total construction cost. PCPs were placed over 1.8 miles of the project and 34 intermittent panels, 
and a total of 730 panels were installed. Unit cost of the PCP for winning bid was about 
$418/panel, while the cost of the panels directly from the manufacturer was about $253. The 
difference in cost was attributed to contractor’s additional cost for removal of existing panels, 
grading, bedding layer placement, installation of PCPs, and survey work. 

The existing pavement was originally constructed in the 1970s with approximately 213 mm 
(8.4 in.) of PCC over 122 mm (4.8 in. of CTB). The annual average daily traffic (AADT) was 
about 196,500 per day in 2003 with 6% trucks in the peak hour and a peak hour volume of 
16,150 vehicles. 

CalTrans based the decision to use PCP layer on this site on the success of accelerated pavement 
testing performed by the Pavement Research Center at the University of California at a nearby 
test site in San Bernardino in 2005 and 2006 (Kohler et al. 2007). Testing was performed using a 
heavy vehicle simulator (HVS) on a test strip of PCP system installed near I-15/I-210 
interchange in San Bernardino, California. According to Kohler et al., 

given the design of the pre-cast PCC pavement tested at the San Bernardino test site, the tight 
control over the construction process, and the favorable HVS test conditions, no premature 
failure is anticipated with the use of the pre-cast PCC pavement on actual rehabilitation 
projects. The ultimate structural capacity of the system will probably exceed 40 million 
ESALS. The structural capacity of the system will, however, have to be determined for a 
range of support and environmental conditions before it can be used with absolute certainty. 
(2007, ii) 

During the initial phase of the project, cores were taken in the pavement and the underlying CTB 
layer to assess its conditions and get layer thicknesses. The as-builts indicated that the pavement 
thickness was 213 mm (8.4 in.). However, Hartog (2012) reported that actual pavement 
thicknesses varied from 163 mm (6.4 in.) to 271 mm (10.7 in.) although Hartog indicated that the 
cores taken during the initial phase were not sufficient to capture the observed variations. 
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Construction Process 

The PCPs were cast off-site under controlled conditions indoors using adjustable forms 
developed by Fort Miller. They were steam cured to prevent shrinkage cracks. Dowel bars, 
dowel slots, and grouting ports were cast into the panels. 

The existing pavements were removed (Figure 1) down to the existing CTB layer (Figure 2) and 
a thin sand bedding layer consisting of washed concrete sand material was placed on the CTB 
layer. The bedding layer was compacted using three passes. The first pass was performed by a 
tractor with a gannon attachment; the second pass was performed by a hand-operated grader 
(Figure 3); and the third pass was performed by a single pass of a roller. 

 

Figure 1. Removal of existing pavement (June 28, 2010) 
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Figure 2. CTB layer after removal of pavement (June 28, 2010) 
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Figure 3. Bedding sand layer placed on CTB and compacted using a hand operated grader 
(June 28, 2010) 

After grading was completed, panels were placed on the bedding material and were set to marks 
established by the surveyor. Two adjacent panels were not set tight against the other panels to 
avoid creep issues. 

Two types of grout were used on this site, dowel grout and bedding grout. The dowel grout 
consisted of high-strength grout material that achieved 2,500 psi in 2 hours or less. The grouting 
process are shown in Figure 4. Bedding grout was injected through a port cast in the panel which 
travelled through the channels that were cast in the bottom of the panel to a port on the opposite 
end of the channel. Four bedding grout channels were cast in the bottom of each panel to ensure 
fairly uniform distribution of the bedding grout. On this project, dowel grouting was performed 
the night of installation and the bedding grouting was performed the following night. After 
grouting, the joints were milled and sealed as necessary. 
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Figure 4. Installing dowel grout (June 28, 2010) 

  

Figure 5. Two views of installing bedding grout (June 28, 2010) 

The following is a list of equipment and personnel used to perform the PCP installation on this 
site (Hartog, 2012): 

• 1 hand-operated grader (HOG) used to finish-grade the bedding layer 
• 1 skip loader used to place and rough-grade the bedding layer 
• 1 water truck used to wet the bedding layer prior to compaction 
• 1 steel-tired roller used to compact the bedding layer 
• 1 40-ton crane for placing precast panel elements 



9 

• 1 concrete saw (sawcutting normally performed the night prior to pcp installation) 
• 1 excavator for removing concrete and 1 sweeper 
• 1 grinder for milling CTB if existing concrete is thin 
• 1 grouting pump and truck to haul and pump grout  
• haul trucks for concrete removal, delivery truck for bedding material, and delivery 

trucks for precast panel elements 
• 1 foreman 
• 1 crane operator 
• 1 excavator/roller operator 
• 1 skip loader operator 
• 1 grinder operator 
• 1 water truck/sweeper operator 
• 4 carpenters (for setting the rails that the HOG ran on) 
• 1 grout pump operator 
• 2 laborers to help with grouting 
• 3–4 laborers to operate the HOG 
• 3–4 laborers to set panels 

Post Construction Testing and Monitoring  

SHRP 2 R05 Testing 

Tayabji et al. (2013a) conducted FWD testing during the daytime in June 2010 before opening to 
traffic. The tests were performed on two sections with precast panels. One section consisted of 
30 panels with both grouted dowel slots and undersealed with bedding grout (fully grouted 
panels). The second section consisted of 12 panels with only grouted dowel slots and no bedding 
grout (dowel only panels). Testing was performed with the objective of comparing deflection 
response between the two sections. Results are presented in Figure 6 and Figure 7. Test results 
near mid-panel indicated that the fully grouted panels had an average of 3 mil less deflection 
than the dowel only panels. Test results near joints indicated that the fully grouted panels had an 
average of 5 mil less deflection than dowel only panels. Also, the panels with only grouted dowel 
slots showed more variability in surface deflections. 
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Figure 6. FWD center plate deflections at mid-panel under 9,000 lb load on I-15 project site 
(Tayabji et al. 2013a) 

 

Figure 7. FWD center plate deflections near joint under 9,000 lb load on I-15 project site 
(Tayabji et al. 2013a) 

CalTrans Monitoring 

Hartog (2012) summarized field observations several months after the PCPs were cast. Thin hair-
line cracks were apparently observed on a number of panels following a rain event. Petrographic 
analysis of cores suggested that the cracking was structurally related and not shrinkage related 
and that the quality of the concrete did not contribute to cracking. 

Hartog (2012) documented a survey of cracked and uncracked panels in relation to the 
construction notes in terms of any grading or other issues noted by the contractor. Of the 696 
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panels surveyed, 24% were cracked. Grading issues were noted by the contractor when placing 
bedding material using a string line approach that resulted in voids and low/high points 
underneath panels that created non-uniform support conditions beneath the panel. Other reported 
issues were occasions when contractors installed panels but opened to traffic without grouting 
the panels. 

Lane 4 (the right most lane) showed more cracked panels (27%) than lane 3, which was 
attributed to higher truck traffic. The contractor’s grading and grouting practices showed strong 
correlation with the incidence of cracking. 

ISU Field Testing  

The ISU research team was present on site on June 28, 2010, to monitor construction operations 
and conduct field Kuab FWD and DCP testing. A summary of test sections is provided in Table 
1. 

FWD tests were conducted on the existing CTB layer, newly constructed PCPs, and the existing 
pavement. 100 mm (4 in.) cores were performed in the CTB layer (Figure 8) to extract samples 
for laboratory testing, but intact samples could not be obtained. DCP tests were conducted in the 
subgrade layer after the core was removed. 

FWD testing was performed in test section 1 (TS1) on the CTB layer in a dense grid pattern over 
a span of about 33 m at three locations over a width of about 2.5 m, with a total of about 44 tests. 
In TS2 and TS3, FWD testing was performed near joint and at mid-panel to compare surface 
deflections and the support conditions between the old and the new pavement slabs. TS2 and 
TS3 were located in adjacent lanes. 

PCP slabs on TS2 were fully grouted at the time of testing with bed grouting and dowel slot 
grouting. 
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Table 1. Summary of test sections and in situ testing 
TS Date Location Material Test  Comments 

1 

6/28/10 

About 160 m 
(500 ft) south of 
exit 110 on I-15 

CTB 
DCP, 
FWD, 
core drill 

Three rows of 15, 14, 16 points 
heading in north direction, 0.9 m 
spacing between paths. 

2 Lane west of TS1 New 
slabs FWD 

FWD on in-place slabs. Every 
other panel – tested center and 
joint 

3 Directly north of 
TS2 Old slabs FWD 

Old pavement north of new 
panels, will be replaced with new 
slabs 

 

 

Figure 8. Coring operations on CTB layer by ISU research team (June 28, 2010)  
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CHAPTER 4. TESTING METHODS AND DATA ANALYSIS  

This chapter summarizes the field testing methods and statistical data analysis used in this study. 
The following in situ testing methods and devices were used in this study: a Kuab falling weight 
deflectometer (FWD) setup with a 300 mm diameter plate and a dynamic cone penetrometer 
(DCP). Pictures of these test devices are shown in Figure 9. 

  

Figure 9. Kuab FWD during testing on the site (left) and ISU researchers conducting a 
DCP test (right) 

Kuab Falling Weight Deflectometer 

Falling weight deflectometer (FWD) tests were conducted using a Kuab FWD setup with a 
300 mm (11.81 in) diameter loading plate by applying one seating drop and three loading drops. 
The applied loads varied from about 27 kN (6,000 lb) to 54 kN (12,000 lb) in the three loading 
drops. The actual applied loads were recorded using a load cell, and deflections were recorded 
using seismometers mounted on the device, per ASTM D4694-09 Standard Test Method for 
Deflections with a Falling-Weight-Type Impulse Load Device. The FWD plate and deflection 
sensor setup and a typical deflection basin are shown in Figure 10. To compare deflection values 
from different test locations at the same applied contact stress, the values at each test location 
were normalized to a 40 kN (9,000 lb) applied force. 

FWD tests were conducted at the center of the PCC slab panels and at the joints. Tests conducted 
at the joints were used to determine joint load transfer efficiency (LTE) and voids beneath the 
pavement based on “zero” load intercept values. Tests conducted at the center of the slab panels 
were used to determine modulus of subgrade reaction (k) values and the intercept values. The 
procedure used to calculate these parameters are described below. 
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Figure 10. FWD deflection sensor setup used for this study and a sample deflection basin 
data illustrating SCI, BDI, and BCI calculations 

The SCI, BDI, BCI, and AF measurements are referred to as deflection basin parameters and are 
determined using the following equations:  

SCI (mm) = D0 – D2 (5) 

BDI (mm) = D2 – D4 (6) 

BCI (mm) = D4 – D5 (7) 
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where, D0 = peak deflection measured directly beneath the plate, D2 = peak deflection measured 
at 305 mm away from the plate center, D4 = peak deflection measured at 510 mm away from the 
plate centre, and D5 = peak deflection measured at 914 mm away from the plate centre. 

According to Horak (1987), the SCI parameter provides a measure of the strength/ stiffness of 
the upper portion (base layers) of the pavement foundation layers (Horak 1987). Similarly, BDI 
represents layers between 300 mm and 600 mm depth (base and subbase layers) and BCI 
represents layers between 600 mm and 900 mm depth (subgrade layers) from the surface 
(Kilareski and Anani 1982). The AF is primarily the normalized (with D0) area under the 
deflection basin curve up to sensor D5 (AASHTO 1993). AF has been used to characterize 
variations in the foundation layer material properties by some researchers (e.g., Stubstad 2002). 
Comparatively lower SCI or BDI or BCI or AF values indicate better support conditions (Horak 
1987). 

LTE was determined by obtaining deflections under the plate on the loaded slab (D0) and 
deflections of the unloaded slab (D1) using a sensor positioned about 305 mm (12 in.) away from 
the center of the plate (Figure 10). The LTE was calculated using Equation 4. 

100(%)
0

1 ×=
D
DLTE  (4) 

Voids underneath pavements can be detected by plotting the applied load measurements on the 
X-axis and the corresponding deflection measurements on the y-axis and plotting a best fit linear 
regression line, as illustrated in Figure 11, to determine the “zero” load intercept (I) values. 
AASHTO (1993) suggests I = 0.05 mm (2 mils) as a critical value for void detection. According 
to van Quintus and Simpson (2002), if I = -0.01 and +0.01 mm, then the response would be 
considered elastic. If I > 0.01 then the response would be considered deflection hardening, and if 
I < -0.01 then the response would be considered deflection softening. 

Pavement layer temperatures at different depths were obtained during FWD testing, in 
accordance with the guidelines from Schmalzer (2006). The temperature measurements were 
used to determine equivalent linear temperature gradients (TL) following the temperature-
moment concept suggested by Janssen and Snyder (2000). According to Vandenbossche (2005), 
I-values are sensitive to temperature induced curling and warping affects. Large positive 
temperature gradients (i.e., when the surface is warmer than the bottom) that cause the panel 
corners to curl down result in false negative I-values. Conversely, large negative gradients (i.e., 
when the surface is cooler than the bottom) that cause the panel corners to curl upward result in 
false positive I-values. Interpretation of I-values therefore should consider the temperature 
gradient. Concerning LTE measurements for doweled joints, the temperature gradient is 
reportedly not a critical factor (Vandenbossche 2005). 
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Figure 11. Void detection using load-deflection data from FWD test 

The k values were determined using the AREA4 method described in AASHTO (1993). Since the 
k value determined from FWD test represents a dynamic value, it is referred to here as 
kFWD-Dynamic. Deflections obtained from four sensors (D0, D2, D4, and D5 shown in Figure 10) 
were used in the AREA4 calculation. The AREA method was first proposed by Hoffman and 
Thompson (1981) for flexible pavements and has since been applied extensively for concrete 
pavements (Darter et al. 1995). AREA4 is calculated using Equation 5 and has dimensions of 
length (in inches), as it is normalized with deflections under the center of the plate (D0): 
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where D0 = deflections measured directly under the plate (in.); D2 = deflections measured at 
305 mm (12 in.) away from the plate center (in.); D4 = deflections measured at 610 mm (24 in.) 
away from the plate center (in.); and D5 = deflections measured at 914 mm (36 in.) away from 
the plate center (in.). The AREA4 method can also be calculated using different sensor 
configurations and setups, (i.e., using deflection data from 3, 5, or 7 sensors), and those methods 
are described in detail in the literature (Substad et al. 2006, Smith et al. 2007) 

In early research conducted using the AREA method, the ILLI-SLAB finite element program 
was used to compute a matrix of maximum deflections at the plate center and the AREA values 
by varying the subgrade k, the modulus of the PCC layer, and the thickness of the slab (ERES 
Consultants, Inc. 1982). Measurements obtained from FWD tests were then compared with the 
ILLI-SLAB program results to determine the k values through back calculation. Barenberg and 
Petros (1991) and Ioannides (1990) proposed a forward solution procedure based on 
Westergaard’s solution for loading on an infinite plate to replace the back calculation procedure. 
This forward solution presented a unique relationship between AREA value (for a given load and 
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sensor arrangement) and the dense liquid radius of relative stiffness (L) in which subgrade is 
characterized by the k value. The radius of relative stiffness (L) is estimated using Equation 6:  

4
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2

41ln
x

x
x
AREAx

L



























 −

=  (6) 

where x1 = 36, x2 = 1812.279, x3 = -2.559, x4 = 4.387. It must be noted that the x1 to x4 values 
vary with the sensor arrangement and these values are only valid for the AREA4 sensor setup. 
Once, the L value is known, the kFWD-Dynamic value can be estimated using Equation 7: 

2
0

*
0)(

LD
PDpcik DynamicFWD =−  (7) 

where P = applied load (lbs), D0 = deflection measured at plate center (inches), and D0
* = non-

dimensional deflection coefficient calculated using Equation 8: 

cLbeeaD
−−⋅=*

0  (8) 

where a = 0.12450, b = 0.14707, c = 0.07565. It must be noted that these equations and 
coefficients are valid for an FWD setup with an 11.81 in. diameter plate. 

The advantages of the AREA4 method are the ease of use without back calculations and the use 
of multiple sensor data. The disadvantages are that the process assumes that the slab and the 
subgrade are horizontally infinite. This assumption leads to underestimating the k values of 
jointed pavements. Crovetti (1994) developed the following slab size corrections for a square 
slab that is based on finite element analysis conducted using the ILLI-SLAB program and is for 
use in the kFWD-Dynamic: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷0 =  𝐷𝐷0 �1 − 1.15085𝐴𝐴−0.71878�𝐿𝐿
′

𝐿𝐿 �
0.80151

� (9) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿 =  𝐿𝐿 �1 − 0.89434𝐴𝐴−0.61662�𝐿𝐿
′

𝐿𝐿 �
1.04831

� (10) 

where L′ = slab size (smaller dimension of a rectangular slab, length or width). This procedure 
also has limitations: (1) it considers only a single slab with no load transfer to adjacent slabs, and 
(2) it assumes a square slab. The square slab assumption is considered to produce sufficiently 
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accurate results when the smaller dimension of a rectangular slab is assumed as L′ (Darter et al. 
1995). Darter et al. 1995 suggested using 𝐿𝐿′ =  �𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐴𝐴ℎ ×  𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴ℎ to further refine slab size 
corrections. However, no established procedures for correcting for load transfer to adjacent slabs 
have been reported so accounting for load transfer remains as a limitation of this method. 

AASHTO (1993) suggests dividing the kFWD-Dynamic value by a factor of 2 to determine the 
equivalent kFWD-Static value. The origin of this factor 2 dates back to Foxworthy’s work in the 
1980s. Foxworthy (1985) reported comparisons between the kFWD-Dynamic values obtained using 
Dynatest model 8000 FWD and the Static k values (Static kPLT) obtained from 30 in. diameter 
plate load tests (the exact procedure followed to calculate the Static kPLT is not reported in 
Foxworthy 1985). Foxworthy used the AREA based back calculation procedure using the ILLI-
SLAB finite element program. Results obtained from Foxworthy’s study (Figure 12) are based 
on 7 FWD tests conducted on PCC pavements with slab thicknesses varying from about 10 in. to 
25.5 in. and plate load tests conducted on the foundation layer immediately beneath the 
pavement over a 4 ft x 5 ft test area. A few of these sections consisted of a 5 to 12 in. thick base 
course layer and some did not. The subgrade layer material consisted of CL soil from Sheppard 
Air Force Base in Texas, SM soil from Seymour-Johnson Air Force Base in North Carolina, and 
an unspecified soil type from McDill Air Force base in Florida. No slab size correction was 
performed on this dataset. 

Data from Foxworthy (1985) yielded a logarithmic relationship between the dynamic and the 
static k values. On average, the kFWD-Dynamic values were about 2.4 times greater than the Static 
kPLT values. Darter et al. (1995) indicated that the factor 2 is reasonable based on results from 
other test sites (Figure 12). Darter et al. (1995) also compared FWD test data from eight long-
term pavement performance (LTPP) test sections with the Static kPLT values and reported factors 
ranging from 1.78 to 2.16, with an average of about 1.91. The kFWD-Dynamic values used in that 
comparison were corrected for slab size. For the analysis conducted in this research project, the 
corrected kFWD-Dynamic values (for finite slab size) were divided by 2 and are reported as kFWD-Static-

Corr values. 
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Figure 12. Static kPLT values versus kFWD-Dynamic measurements reported in literature 

For tests conducted on the CTB layer, a composite modulus value (EFWD-K3) was calculated using 
the measured deflection at the center of the plate (D0), corresponding applied contact force, and 
Equation 10. 
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where E = elastic modulus (MPa);  
D0 = measured deflection under the plate (mm); 
η = Poisson’s ratio (0.4);  
σ0 = applied stress (MPa); 
r = radius of the plate (mm); and 
F = shape factor depending on stress distribution. Assumed as 2 because the plate used in this 
study is a four-segmented plate, and therefore and produces an assuming a uniform stress 
distribution according to the manufacturer (see Vennapusa and White 2009). 

The subgrade layer modulus (ESG) was determined using Equation 11, per AASHTO (1993): 
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where: Di = measured deflection at distance di (mm); and di = radial distance of the sensor away 
from the center of the loading plate. 

AASHTO (1993) suggests that the di must be far enough away that it provides a good estimate of 
the subgrade modulus, independent of the effects of any layers above, but also close enough that 
it does not result in a too small value. A graphical solution is provided in AASHTO (1993) to 
estimate the minimum radial distance based on an assumed effective modulus of all layers above 
the subgrade and the d0 value. Salt (1998) indicated that if ESG values are plotted against radial 
distance, in linear elastic materials such as sands and gravels, the modulus values decrease with 
increasing distance and then level off after a certain distance. The deformations at the distance at 
which the modulus values level off can be used to represent ESG. In some cases the modulus 
values decrease and then increase with distance. Such conditions represent either soils with 
moderate to high moduli with poor drainage at the top of the subgrade or soft soils with low 
moduli. In those cases the distance where the modulus is low is represented as ESG. 

Ullidtz (1987) described Odemark’s method of equivalent thickness (MET) concept and is used 
in AASHTO (1993). According to the MET concept, a two-layered system with the top layer 
modulus higher than the bottom layer, can be transformed into a single layer of equivalent 
thickness with properties of the bottom layer. Using this concept and the modulus of the bottom 
layer (ESG), the top layer modulus (ESB) can be back-calculated. 

In this study, tests conducted on the CTB layer were used to calculate ESG and back-calculate ESB 
values. 

Dynamic Cone Penetrometer 

DCP tests were performed in accordance with ASTM D6951-03 Standard Test Method for Use 
of the Dynamic Cone Penetrometer in Shallow Pavement Applications to determine dynamic 
penetration index (DPI) and calculate California bearing ratio (CBR) using Equation 11. 

12.1DPI
292CBR =

 (12) 

The DCP test results are presented in this report as CBR with depth profiles. 

Determination of R values 

The Resistance Value (R-Value) is a material stiffness parameter that was developed by F.N. 
Hveem and R.M. Carmany of the California Division of Highways and was first reported in the 
late 1940s. Rigid pavement thickness design per the CalTrans Highway Design Manual is based 
on R-Value, so R-Values were determined in this study for reference. Correlations between 
elastic/resilient modulus and R-Value were provided by Hveem and Carmany (1948) and are 
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shown in Appendix A. The ESG values calculated from FWD tests were converted to R-Value in 
this study. 

Geostatistical Data Analysis 

Spatially referenced in situ point measurements in a dense grid pattern were obtained in this 
study. These data sets provide an opportunity to quantify “non-uniformity” of compacted fill 
materials. Non-uniformity can be assessed using conventional univariate statistical methods (i.e., 
by statistical standard deviation (σ) and coefficient of variation (COV)), but they do not address 
the spatial aspect of non-uniformity. Vennapusa et al. (2010) demonstrated the use of 
semivariogram analysis in combination with conventional statistical analysis to evaluate non-
uniformity in QC/QA during earthwork construction. A semivariogram is a plot of the average 
squared differences between data values as a function of separation distance, and is a common 
tool used in geostatistical studies to describe spatial variation. A typical semivariogram plot is 
presented in Figure 13. The semivariogram γ(h) is defined as one-half of the average squared 
differences between data values that are separated at a distance h (Isaaks and Srivastava 1989). If 
this calculation is repeated for as many different values of h as the sample data will support the 
result can be graphically presented as experimental semivariogram, shown as circles in Figure 
13. More details on experimental semivariogram calculation procedure are available elsewhere in 
the literature (e.g., Clark and Harper 2002, Isaaks and Srivastava 1989). 

To obtain an algebraic expression for the relationship between separation distance and 
experimental semivariogram, a theoretical model is fit to the data. Some commonly used models 
include linear, spherical, exponential, and Gaussian models. A spherical model was used for data 
analysis in this report. Arithmetic expression of the spherical model and the spherical variogram 
are shown in Figure 13. Three parameters are used to construct a theoretical semivariogram: sill 
(C+C0), range (R), and nugget (C0). These parameters are briefly described in Figure 13. 

 

Figure 13. Description and parameters of a typical experimental and spherical 
semivariogram 
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Additional discussion on the theoretical models can be found elsewhere in the literature (e.g., 
Clark and Harper 2002, Isaaks and Srivastava 1989). For the results presented in this report, the 
sill, range, and nugget values during theoretical model fitting were determined by checking the 
models for “goodness” using the modified Cressie goodness fit method (see Clark and Harper 
2002) and cross-validation process (see Isaaks and Srivastava 1989). From a theoretical 
semivariogram model, a low sill and longer range of influence values represent the best 
conditions for uniformity, while the opposite represents an increasingly non-uniform condition. 
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CHAPTER 5. RESULTS AND ANALYSIS 

TS1: CTB Layer 

Test measurements obtained from TS1 in a grid pattern with 44 tests over a plan area of about 
33 m x 2.5 m provided a dataset to characterize the spatial characteristics of the measurements 
using geostatistical analysis. Kriged spatial contour maps, semivariograms, histograms of FWD 
measurements, and raw test measurements along each path are presented in Figure 14 to Figure 
17. A spherical semivariogram model showed best fit for all the measurements.  

DCP tests were conducted at five test locations. DCP-CBR and cumulative blows with depth 
profiles are presented in Figure 18. Results indicated that the subgrade layer CBR was relatively 
high (30 to 100+). 

Results indicated that the average composite modulus was about 357 MPa with a COV of about 
17%. The average CTB layer modulus was about 7,200 MPa with a COV of about 42%. The 
average subgrade layer modulus was about 105 MPa with a COV of about 10%, which 
represents relatively stiff subgrade conditions, which was also confirmed with DCP tests. The 
average R-value of the subgrade was about 45 with a COV of about 5%. 
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Figure 14. TS1 CTB: Kriged spatial contour map (top), measurements longitudinally along 
the test section (middle), histogram (bottom left), and semivariogram (bottom right) of 

EFWD-K3 measurements 
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Figure 15. TS1 CTB: Kriged spatial contour map (top), measurements longitudinally along 
the test section (middle), histogram (bottom left), and semivariogram (bottom right) of ESB 

(CTB layer modulus) measurements 
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Figure 16. TS1 CTB: Kriged spatial contour map (top), measurements longitudinally along 
the test section (middle), histogram (bottom left), and semivariogram (bottom right) of ESG 

(subgrade layer modulus) measurements 
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Figure 17. TS1 CTB: Kriged spatial contour map (top), measurements longitudinally along 
the test section (middle), histogram (bottom left), and semivariogram (bottom right) of R-

value measurements 
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Figure 18. TS1 CTB: DCP-CBR and cumulative blows with depth profiles at 5 test 
locations 

TS2 and TS3: New PCP and Old Pavement 
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in Figure 21. 
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Figure 19. TS2 and TS3: FWD D0 and joint LTE  

 

Figure 20. TS2 and TS3: FWD k values and R-value calculated from k value per PCA 1984 
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Figure 21. TS2 and TS3: FWD deflection basin parameters 
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Figure 22. TS2 and TS3: Box plots comparing measurements on new PCP and old 
pavement for tests conducted near mid-panel: (a) D0, (b) I-value, (c) kFWD-Static-Corr, (d) SCI, 

(e) BDI, (f) BCI, (g) Area Factor, and (h) R-value 
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Figure 23. TS2 and TS3: Box plots comparing measurements on new PCP and old 
pavement for tests conducted near joint: (a) D0, (b) LTE, (c) SCI, (d) BDI, (e) BCI, and (f) 

Area Factor 

Results indicated that there was statistically significant difference in D0 and I values near mid-
panel, but not in any of the other deflection basin parameters (SCI, BCI, BDI, AF) and k value. 
The D0 and I values were lower on the new pavement than on the old pavement. This suggests 
that there was improvement in the deflection response near the surface, which reflect better 
support conditions directly beneath the new pavement. Deeper improvements are not expected 
and are reflected in the deflection basin parameters. 

There were no statistically significant differences in any of the measurement values obtained at 
the joint. The LTE values were relatively high (> 85%) at all locations. The average R-value 

(a) (b)

(c) (d)

(e) (f)

New PCP                                                           Old JPCCNew PCP                                                           Old JPCC

New PCP                                                           Old JPCCNew PCP                                                           Old JPCC

New PCP                                                           Old JPCCNew PCP                                                           Old JPCC



33 

obtained from FWD testing was about 50 and was similar to the value obtained from FWD 
testing on the CTB layer (45). 

Table 2. Summary of t-test analysis on FWD deflection basin parameters near mid-panel 
on new versus old pavement  

Parameter New or old pavement Mean COV (%) t-value Pr 

D0 (µm) New 118 9 -2.45 0.025 Old 150 23 

I (µm) New -16 -192 -2.56 0.010 Old 11 174 

kFWD-Static-Corr (kPa/mm) New 47 21 1.30 0.11 Old 41 25 

SCI (µm) New 15 21 -0.48 0.32 Old 18 99 

BDI (µm) New 18 11 -0.49 0.32 Old 20 54 

BCI (µm) New 17 9 -0.86 0.21 Old 19 43 

AF (mm) New 725 4 -0.72 0.25 Old 751 12 
Note: Highlighted cell indicates statistically significant difference at 95% confidence level between the new and old 
pavements 

Table 3. Summary of t-test analysis on FWD deflection basin parameters near joint on new 
and old pavement 
Parameter New or old pavement Mean COV (%) t-value Pr 

D0 (µm) New 241 30 0.11 0.46 Old 238 25 

LTE (%) New 90 7 -0.67 0.26 Old 92 7 

SCI (µm) New 49 33 -1.05 0.16 Old 58 31 

BDI (µm) New 46 34 0.25 0.40 Old 45 27 

BCI (µm) New 40 35 0.60 0.28 Old 37 25 

AF (mm) New 647 3 2.19 0.04 Old 619 5 
Note: Highlighted cell indicates statistically significant difference at 95% confidence level between the new and old 
pavements 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

This report presented field test results and observations from a rehabilitation project on I-15 near 
Ontario, California, which involved replaced an old pavement with precast concrete pavement 
(PCP) panels. A total of 730 panels were installed. Unit cost of the PCP for winning bid was 
about $418/panel. The total bid cost of the project was about $51.9 million. PCP systems 
constituted approximately $4.6 million of the total construction cost. The existing old pavement 
was originally constructed in the 1970s with approximately 213 mm (8.4 in.) of PCC over 
122 mm (4.8 in. of CTB). The old pavement was removed, a new thin bedding sand layer was 
placed, and 203 mm (8 in.) thick new PCP panels were placed as part of the rehabilitation work. 
Bedding grout was pumped into precast ports for undersealing and dowel grout was injected to 
the dowel slots. 

Following are some key findings from work performed by the SHRP2 R05 research team and 
CalTrans: 

• FWD testing was conducted by Tayabji et al. (2013a) on PCP panels constructed with 
and without bedding grout. The results showed that deflections were considerably 
smaller (3 to 5 mils) on panels where bedding grout was used. 

• The panels with only dowel-slot grouting showed more variability in surface 
deflections. 

• Field monitoring several months after construction showed thin hair-line cracks on 
several panels. A detailed survey was conducted on 696 panels, of which 24% were 
cracked. 

• Based on crack survey mapping and field notes during construction, it was concluded 
that the contractor’s grading practices contributed to the cracking. It was found that 
the stringline approach used to place the bedding material sometimes created high and 
low spots resulting in non-uniform support conditions. Cracks at some locations were 
attributed to opening the lane to traffic before grouting. 

The ISU research team was present on site on June 28, 2010 to monitor construction operations 
and conduct field testing. Kuab FWD and DCP tests were conducted on CTB layer, and FWD 
tests were conducted on two adjacent test sections consisting of old pavement and new PCP 
panels. Following are some key findings from the ISU testing:  

• Tests on the CTB layer indicated that the average composite modulus was about 
357 MPa with a COV of about 17%. The average CTB layer modulus was about 
7,200 MPa with a COV of about 42%. The average subgrade layer modulus was 
about 105 MPa with a COV of about 10%, which represented relatively stiff subgrade 
conditions. 

• CBR values estimated in the subgrade from DCP tests showed relatively high values 
(ranging between 30 and 100), which confirms the relatively high subgrade modulus 
values. The average R-value of the subgrade was about 45 with a COV of about 5%. 

• Statistical analysis of FWD measurement values obtained on the old and new 
pavement indicated that there was a statistically significant difference in surface 
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deflection (D0) and zero-load intercept (I) values near mid-panel, but not in any of the 
other deflection basin parameters and the modulus of subgrade reaction (k) value. The 
D0 and I values were lower on the new pavement that on the old pavement. This 
suggests that there was improvement in the deflection response near the surface, 
which reflects better support conditions directly beneath the new pavement. This was 
also confirmed in the SHRP2 R05 testing. Deeper improvements are not expected 
which is reflected in the deflection basin parameters. 

• There were no statistically significant differences in any of the measurement values 
obtained at the joint. The LTE values were relatively high (> 85%) at all locations. 

• The average R-value obtained from FWD testing was about 50 and was similar to the 
value obtained from FWD testing on the CTB layer (45). 
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APPENDIX: CORRELATIONS BETWEEN R-VALUE AND MODULUS 

 

Figure 24. Chart to estimate resilient modulus (Mr) of subgrade from CBR (from AASHTO 
1993 Appendix FF based on results from van Til et al. 1972) 
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