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EXECUTIVE SUMMARY 

The number of internet-connected cameras is increasing at a rapid pace. State departments of 

transportation (DOTs) typically install a large number of closed-circuit television (CCTV) 

cameras across freeways for surveillance purposes. However, it is virtually impossible to 

manually monitor such a large network of cameras constantly. Hence, there is a significant need 

to develop automatic anomaly detection algorithms that use the data from these cameras.  

This study was divided into two broad topics involving the detection of freeway traffic anomalies 

from cameras: detecting traffic congestion from camera images and detecting traffic incidents 

from camera videos. 

The first research objective involved detecting traffic congestion from camera images. Two 

modern deep learning techniques, the traditional deep convolutional neural network (DCNN) and 

you only look once (YOLO) models, were used to detect traffic congestion from camera images. 

A shallow model, support vector machine (SVM) was also used for comparison and to determine 

the improvements that might be obtained using costly GPU techniques 

The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with 

an accuracy of 90.2%; 85% of images were correctly classified by the SVM model. Congestion 

regions located far away from the camera, single-lane blockages, and glare issues were found to 

affect the accuracy of the models. Sensitivity analysis showed that all of the algorithms were 

found to perform well in daytime conditions, but nighttime conditions were found to affect the 

accuracy of the vision system. However, for all conditions, the areas under the curve (AUCs) 

were found to be greater than 0.9 for the deep models. This result shows that the models 

performed well in challenging conditions as well. 

The second part of this study aimed at detecting traffic incidents from CCTV videos. Typically, 

incident detection from cameras has been approached using either supervised or unsupervised 

algorithms. A major hindrance in the application of supervised techniques for incident detection 

is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation 

tasks involved in the preparation of a labeled dataset.  

In this study, the research team approached the incident detection problem using semi-supervised 

techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation 

(CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle 

detection was performed using state-of-the-art deep learning-based YOLOv3, and simple online 

real-time tracking (SORT) was used for tracking. Results showed that CPLE-based trajectory 

classification outperformed the traditional semi-supervised techniques (self learning and label 

spreading) and its supervised counterpart by a significant margin. 



 

 



1 

CHAPTER 1. INTRODUCTION 

Traffic congestion on freeways poses a major threat to the economic prosperity of the nation 

(Owens et al. 2010). Freeway congestion is usually classified into two categories: recurrent 

congestion and non-recurrent congestion (Ozbay and Kachroo 1999, Dowling et al. 2004, 

Anbaroglu et al. 2014). Recurrent congestion typically exhibits a daily pattern, observed in 

morning or evening peaks, while non-recurrent congestion is mainly caused by unexpected 

events or anomalies such as traffic incidents or stalled vehicles (Anbarogluet al. 2014). Such 

events are a major source of travel time variability (Noland and Polak 2002) and often cause 

frustration to commuters (TTI with Cambridge Systematics 2005). Hence, traffic anomaly 

detection has been identified as a crucial method for the reduction of non-recurrent traffic 

congestion (Sussman 2005). Early incident detection was shown to save 143.3 million man-hours 

and $3.06 million in 2007 (Schrank and Lomax 2007). Consequently, significant research has 

been done on the development of accurate anomaly detection algorithms.  

With the widespread use of mobile phones and video surveillance systems, incident detection 

time has been reported to have decreased significantly in recent years, particularly in urban 

conditions. In general, it has been found that incidents are usually reported within 2 minutes and 

seldom within more than 5 minutes (Yang et al. 2018). However, this reporting mostly relies on 

either calls from people directly involved in the incidents or manual inspection of hundreds of 

cameras installed on the freeways, which hinders the scalability and reliability of the detection 

system. Cameras, however, when used for automatically detecting traffic anomalies, can report 

such anomalies within seconds. In the 2018 AI City Challenge, traffic incident detection times 

were reported to be within 3 to 10 seconds (Naphade et al. 2018).  

With the recent advancements in deep learning techniques and improvements in object detection 

accuracies from videos and images (Han et al. 2018), cameras installed on freeways can be used 

to automatically detect traffic anomalies in significantly less time than other data sources. State 

departments of transportation (DOTs) typically install these roadside cameras on freeways and 

arterials for surveillance tasks such as incident detection. These cameras, when used effectively, 

can serve as useful sources for detecting traffic anomalies. 

However, two major challenges arise in using cameras for traffic anomaly detection. First, these 

cameras are used by traffic incident managers, who can zoom, tilt, and pan the cameras 

according to their need. Such frequent camera movement can alter the default calibrations and 

thereby impact the performance of anomaly detection algorithms. Therefore, anomaly detection 

algorithms should not rely on the camera calibration and should be able to account for frequent 

camera movements. In this study, the research team developed anomaly detection algorithms that 

do not require camera calibration and, hence, can account for frequent movements of the 

cameras. Secondly, cameras are known to perform poorly in difficult weather conditions, such as 

snow or rain. To mitigate such disadvantages, state-of-the-art deep learning-based object 

detection and tracking algorithms were used in this study that can perform fairly well in adverse 

weather conditions. 



2 

This study is divided into two broad research objectives: detecting traffic congestion from 

camera images and detecting traffic incidents from camera videos using semi-supervised 

learning. Since traffic congestion is a major source of travel time variability, the first focus of 

this study was to detect congested regions, irrespective of whether the congestion observed is 

recurrent or non-recurrent. Camera images captured from different locations and orientations and 

in different weather conditions were used to successfully detect traffic congestion. Three 

different models were used for congestion detection tasks. Two of these were deep neural 

network models: deep convolutional neural networks (DCNNs) and you only look once (YOLO) 

(Redmon and Farhadi 2017). Because these models require time-consuming and costly graphics 

processing unit (GPU) training, support vector machine (SVM), a shallow learning model, was 

used as a comparison to determine the advantages of using the deep models.  

The second part of this study went one step beyond congestion detection from images to detect 

traffic incidents from videos. The research team adopted a semi-supervised learning approach for 

trajectory classification to detect traffic incidents from videos. Traffic incident detection from 

videos using trajectory information comprises three basic tasks: vehicle detection, vehicle 

tracking and trajectory formation, and trajectory classification. In this study, a deep learning-

based object detector, YOLO (Redmon and Farhadi 2018), was used to detect vehicles in video 

frames and a Kalman filtering-based tracker (Bewley et al., n.d.) was used to track the vehicles. 

Finally, the trajectories were classified into incidents and non-incidents using a semi-supervised 

classifier. This helped to do away with the step of manually annotating vehicle tracks in a video 

stream to prepare a training dataset, which is extremely labor-intensive, expensive, and not 

scalable. The experimental results using traffic video data provided by the Iowa DOT 

demonstrate that the developed framework achieves superior performance compared to 

supervised learning techniques with a comparable number of labeled examples.  

This report is organized as follows. Chapter 2 provides a brief description of the relevant 

literature on traffic congestion and anomaly detection on freeways. Chapter 3 provides a detailed 

description of the first objective of this study, the detection of traffic congestion from camera 

images. The details of the methodology, data, and results and a short conclusion for the problem 

are provided in this chapter. Similarly, Chapter 4 describes the details of the methodology, data, 

and results and a brief conclusion for the second research objective, semi-supervised-based 

trajectory classification for incident detection from traffic camera videos. Finally, Chapter 5 

provides a conclusion on the work done in this study, the limitations of the study, and the scope 

of future work.   
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CHAPTER 2. LITERATURE REVIEW 

Significant research has been performed on using traffic cameras for detecting traffic anomalies 

and estimating traffic states, which can be used to detect traffic congestion. This section gives a 

brief overview of the research performed in each of these areas. 

2.1. Traffic Congestion Detection from Closed-Circuit Television (CCTV) Images 

Dissemination of real-time traffic information to road users can significantly improve the 

efficiency of traffic networks. Hence, estimating real-time traffic states and thereby detecting 

network anomalies, such as congestion and incidents, have been of significant interest to 

researchers for the last few decades. 

Traditionally, traffic state estimation is conducted using point-based sensors, including inductive 

loops, piezoelectric sensors, and magnetic loops (Kotzenmacher et al. 2004). Recent advances in 

active infrared/laser radar sensors have led to these devices gradually replacing the traditional 

point-based sensors (Zhong and Liu 2007). Also, with the increasing use of navigation-based 

global positioning system (GPS) devices, probe-based data are emerging as a cost-effective way 

to collect network-wide traffic data (Feng et al. 2014). Video monitoring and surveillance 

systems also are used for gathering real-time traffic data (Ozkurt and Camci 2009). Recent 

advances in image processing techniques have improved the accuracy of vision-based detection. 

Deep learning methods, such as convolutional neural networks (CNNs), have been able to 

achieve human-level accuracy in image classification tasks (He et al. 2016). The basic advantage 

of these methods is that they do not require the identification of hand-crafted features and hence 

can do away with the painstaking calibration tasks needed when using camera images for traffic 

state estimation (Bauzaet al. 2010). 

Studies have also been performed fusing multiple sources of data for traffic state estimation. Van 

Lint and Hoogendoorn (2010) used an extended generalized Treiber-Helbing filter for fusing 

probe-based and sensor-based data. Choi and Chung (2010) used fuzzy regression and Bayesian 

pooling techniques for estimating link travel times from probe data and sensor data. Bachmann et 

al. (2013) investigated several multi-sensor data fusion-based techniques to compare their ability 

to estimate freeway traffic speed. State DOTs have also traditionally used sensor data and probe 

vehicle data for traffic state estimation. However, they have also installed a large number of 

roadside cameras on freeways and arterials for surveillance tasks such as incident detection. 

These cameras are used by traffic incident managers, who can zoom, tilt, and pan the cameras 

according to their need. Hence, the use of cameras for traffic state estimation or congestion 

detection introduces challenges related to frequent camera movement, which can alter the 

cameras’ default calibrations. However, algorithms should not rely on the exact placement of 

cameras and should be able to accurately detect traffic conditions for different placement 

scenarios.  

In the present study, camera images taken from different locations and orientations and in 

different weather conditions were used to successfully detect traffic congestion. Three different 

models were used for congestion detection tasks. Two of these were deep neural network 
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models: DCNNs and YOLO. Because these models require time-consuming and costly GPU 

training, SVM, a shallow learning model, was used as a comparison to determine the advantages 

of using the deep models. 

During the last few decades, significant research efforts have been devoted to using closed-

circuit television (CCTV) cameras to determine real-time traffic parameters such as volume, 

density, and speed (Darwish and Abu Bakar 2015). The methods in these studies can be broadly 

divided into three categories: detection-based methods, motion-based methods, and holistic 

approaches. 

Detection-based methods use individual video frames to identify and localize vehicles and 

thereby perform a counting task. Ozkurt and Camci (2009) used neural network methods to 

perform vehicle counting and classification tasks from video records. Kalman filter-based 

background estimation has also been used to estimate vehicle density (Balcilar and Sönmez 

2008). However, these methods were found to perform poorly for videos with low resolution and 

high occlusion. Recent achievements in deep learning methods for image recognition tasks have 

led to several such methods being used for traffic counting tasks. Adu-Gyamfi et al. (2017) used 

DCNNs for vehicle category classification. Oñoro-Rubio and López-Sastre (2016) used two 

variations of CNN, namely counting CNN and hydra CNN, to conduct vehicle counting and 

predict traffic density. Recently, Zhang et al. (2015) used both deep learning and optimization-

based methods to perform vehicle counts from low-frame-rate, high-occlusion videos.  

Several motion-based methods have been proposed in the literature to estimate traffic flow using 

vehicle tracking information. Asmaa et al. (2013) used microscopic parameters extracted using 

motion detection in a video sequence. However, these methods tend to fail due to the lack of 

motion information and the low frame rates of videos; some vehicles appear only once in a 

video, and hence it is difficult to estimate their trajectories. 

Holistic approaches avoid the segmentation of each object. Rather, an analysis is performed on 

the whole image to estimate the overall traffic state. Gonçalves et al. (2012) classified traffic 

videos into different congestion types using spatiotemporal Gabor filters. Lempitsky and 

Zisserman (2010) performed a linear transformation on each pixel feature to estimate the object 

density in an image; however, this approach was found to perform poorly in videos with a broad 

perspective. Further, both of these methods require manual annotation of each object in the 

images to perform the training for the counting task.  

Overall, significant studies have been conducted in the past using various deep and shallow 

learning models to implement vehicle counting tasks and thereby determine congestion states. In 

the present study, the research team adopted the holistic approach to label an image as either 

congested or non-congested. Instead of counting each vehicle to determine the congestion state, 

each image was assigned its label based on nearby benchmark sensors, and then the classification 

task was performed. The following section provides a detailed description of the studies relevant 

to the second research objective of this study, the use of a semi-supervised learning approach for 

freeway incident detection from videos. 
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2.2. Freeway Incident Detection from CCTV Videos 

Approaches to traffic incident detection from CCTV cameras can be broadly classified into two 

categories: explicit event recognition and anomaly detection.  

In explicit event recognition, the explicit knowledge of the events to be identified is used for 

incident detection. This technique requires a priori knowledge of all of the recognizable events, 

which the associated automatic incident detection (AID) systems use as predefined templates to 

parse the incoming data for incident detection. For example, Ravinder et al. (2008) applied video 

image processing for traffic management to detect cases of non-adherence to lane discipline. 

Sadeky et al. (2010) used logistic regression over histogram of flow gradients (HFG) to 

determine the probability of occurrence of an accident in a video sequence. Hui et al. (2014) used 

a Gaussian mixture model (GMM) to detect vehicles in traffic and track them using a mean shift 

algorithm. Traffic incident alarms were triggered when the velocity or acceleration of the 

detected vehicles exceed a pre-determined threshold. Ren et al. (2016) used video-based 

detection to analyze the traffic state distribution characteristics in a cluster of cells dividing the 

lanes of a road segment.  

The other popular approach to incident detection is anomaly detection. In this approach, the 

system attempts to learn “typical” patterns in the incoming data; any irregularities in the 

observed data can be classified as an incident. For example, Lou et al. (2002) used dynamic 

clustering techniques to cluster normal trajectories and detect abnormal ones. Piciarelli et al. 

(2008) used one-class SVM to detect anomalous trajectories. More recently, Yuan et al. (2017) 

performed anomaly detection in traffic scenarios using spatially aware motion reconstruction. 

Such unsupervised modeling of video sequences has also traditionally involved a combination of 

sparse coding and bag-of-words (BoW) models (Zhao et al. 2011). However, recent 

developments in deep learning techniques have resulted in new methods of learning normal 

video patterns and thereby detecting anomalies based on reconstruction error.  

Hasan et al. (2016) used a fully convolutional feed-forward autoencoder to learn the spatio-

temporal local features in videos and thereby learn the temporal regularity in video sequences. 

Chong and Tay (2017) also used a combination of spatial feature extractor and temporal 

sequencer techniques based on a convolutional long short-term memory (ConvLSTM) network 

for anomaly detection in videos.  

The above two categories of traffic incident detection approaches can broadly be termed as 

supervised and unsupervised learning techniques. While supervised techniques can, in general, 

provide better results in detection or classification tasks, the main hindrance in their application 

is the scarcity of supervised data samples and the cost of manually annotating and labeling the 

dataset. In particular, manually annotating vehicle tracks in a video stream is extremely labor-

intensive, expensive, and not scalable. In the present study, the research team established a new 

learning framework for traffic incident detection using recent advances in semi-supervised 

learning (Loog 2016). This framework can achieve the “best of both worlds.” A small sample of 

normal vehicle tracks and the tracks of vehicles involved in an incident were manually 

annotated, and all other (unlabeled) vehicle tracks were used to improve the performance of the 
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classification. Since this approach uses trajectory-based classification for detecting incident 

trajectories, the first two steps are to detect vehicles and track them to assign the trajectories. A 

brief overview of past research on vehicle detection and tracking is provided in the following 

section.  

Object Detection  

In recent years, the evolution of CNN has resulted in significant improvements in the 

performance of object detection and classification. Results of the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) point to dramatic improvements in object detection, 

localization, and classification (Russakovsky et al. 2015).  

Region-based convolutional neural networks (R-CNNs) were among the first modern 

developments in CNN-based detection (Girshick et al. 2014). These developments involved 

cropping externally computed box proposals from an input image and running a neural net 

classifier on these crops. However, overlapping crops led to significant duplicate computations, 

which, in turn, led to low processing speeds. The development of Fast R-CNN involved pushing 

the entire input image only once through a feature extractor and cropping from an intermediate 

layer (Girshick 2015). This led to the crops sharing the computation load for feature extraction 

and thereby increased processing speed.  

Recent work has focused on generating box proposals using neural networks instead of relying 

on the external box proposals used in R-CNN and Fast R-CNN (Szegedy et al. 2013, Erhan et al. 

2014, Ren et al. 2017, Redmon et al. 2016). Such approaches involve overlaying a collection of 

boxes on the image at different locations, aspect ratios, and scales. These boxes are called 

anchors or priors. Training is then performed to predict the discrete class of each anchor and the 

offset by which the anchor needs to be shifted to fit the ground truth bounding box. The accuracy 

and computation time of the object detection algorithm depends significantly on the choice of 

these anchors.  

The following sections discuss four recent architectures for object detection and classification: 

Faster R-CNN (Ren et al. 2017), single-shot multibox detector (SSD) (Liu et al. 2016), region-

based fully convolutional networks (R-FCNs) (Dai et al. 2016), and YOLO (Redmon et al. 

2016).  

Faster Region-Based Convolutional Neural Networks (Faster R-CNN)  

Faster R-CNN performs detection in two stages. Stage 1, called the region proposal network 

(RPN), involves processing images using a feature extractor (VGG-16), and the class-agnostic 

box proposals are predicted from the features obtained at some selected intermediate level 

(conv5).  

In Stage 2, features from the same intermediate feature map are extracted using the box 

proposals and fed to the remainder of the feature extractor to predict the class and the class-
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specific box refinement for each proposal. Faster R-CNN is the basis on which most subsequent 

object detection algorithms, including SSD and R-FCN, were developed. 

Single-Shot Multibox Detector (SSD) 

SSD architecture is built on VGG-16 architecture. It uses a single feed-forward convolutional 

network to predict classes and anchor offsets, thereby evading the requirement for a second-stage 

per-proposal classification operation.  

In this approach, the output space of bounding boxes is discretized into a set of default boxes 

with different object scales and aspect ratios. During prediction, scores for the presence of an 

object in each default box are generated by the network, and, finally, adjustments are made to the 

box to match the object shape more accurately. 

Region-Based Fully Convolutional Networks (R-FCN) 

R-FCN is fundamentally derived from Faster R-CNN, but it is designed to work much faster than 

Faster R-CNN. In R-FCN, crops are extracted from the last layer of features prior to prediction 

instead of cropping features from the layer where region proposals are predicted. This minimizes 

the per-region computation and has been shown to achieve comparable accuracy to Faster R-

CNN with less computation time.  

Previous research studies have proposed a position-sensitive cropping mechanism in place of the 

standard region of interest (ROI) pooling operation (Ren et al. 2017). A detailed comparison of 

these three algorithms (Faster R-CNN, SSD, and R-FCN), along with the speed-accuracy 

tradeoffs, can be found in a study by Huang et al. (2017). 

You Only Look Once (YOLO) 

YOLO frames object detection as a regression problem (Redmon et al. 2016). A single neural 

network is used to predict the bounding boxes and associated class probabilities in a single 

evaluation over the entire image. Thus, the entire pipeline can be optimized end-to-end based on 

detection performance. This makes the algorithm very fast, and images can be processed in real-

time (45 frames per second [fps]). A detailed description of the YOLO model is provided in 

Section 3.2 of this report. 

Multi-Object Tracking (MOT) 

Multi-object tracking (MOT) aims to estimate the states of multiple objects while conserving 

their identification across time under variations in motion and appearance. This involves 

determining the locations, velocities, and sizes of the objects across time. With the recent 

advancements in object detection, tracking-by-detection has emerged as one of the predominant 

approaches for multi-object tracking. This approach generally involves associating the objects 
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detected across multiple frames in a video sequence. The two broad categories in a tracking-by-

detection framework are batch and online tracking.  

Batch methods usually involve determining object trajectories in a global optimization problem 

and processing the entire video at once. Short tracklets are generated; individual detections are 

linked first, and then the tracklets are associated globally to form the object trajectory. Flow 

network formulations (Zhang et al. 2008, Berclaz et al. 2011) and probabilistic graphical models 

(Yang and Nevatia 2012, Andriyenko et al. 2012) are the two broad classes of algorithms in a 

batch MOT problem. However, the intensive iterative computation required for generating 

globally associated tracks and the need for detection of the entire sequence beforehand limits the 

use of these batch MOT approaches in real-time applications.  

Online methods build trajectories sequentially by using information provided up to the present 

frame and associating the frame-by-frame objects detected. Thus, this approach can be easily 

implemented for real-time tracking. However, these methods are prone to fragmented trajectory 

generation under occlusion and object detection errors.  

Traditional online MOT methods are multiple hypothesis tracking (MHT) (Reid 1979, Kim et al. 

2015) and joint probabilistic data association filter (JPDAF) (Fortmann et al. 1983, Rezatofighi 

et al. 2015). The JPDAF method involves generating a single state hypothesis by weighting 

individual measurements with the association likelihoods. MHT, in contrast, involves tracking all 

possible hypotheses and then applying pruning schemes for computational tractability. Both of 

these approaches require significant computational and implementation complexity, thereby 

limiting their implementation in real-time applications.  

Recently, Bewley et al. (2016) proposed simple online real-time tracking (SORT), which 

performs Kalman filtering in the image space and uses the Hungarian algorithm for frame-by-

frame data associations. With a state-of-the-art object detection framework (Ren et al. 2017), 

SORT ranks higher than MHT in the MOT Challenge dataset (Leal-Taixe et al. 2015). However, 

SORT is known to perform poorly when state estimation uncertainty is high and is known to 

return substantially high identity switches.  

To overcome this shortcoming, Wojke et al. (2017) proposed the Deep-SORT algorithm, which 

incorporates both motion and appearance information into the association metric, which, in turn, 

increases robustness against occlusions or detection errors. Even more recently, Bae and Yoon 

(2018) proposed a robust online MOT method that uses confidence-based data association for 

handling track fragmentation and deep appearance learning for handling similar object 

appearance in tracklet association.  

In the present study, the research team used YOLOv3 for detecting vehicles, SORT for tracking 

vehicles and forming trajectories, and semi-supervised trajectory classification for identifying 

incident trajectories. The experimental results of the proposed approach for incident detection 

using traffic data obtained from Iowa DOT cameras demonstrate that the framework achieved 

superior performance compared to supervised learning techniques with a comparable number of 
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labeled examples. The following chapter provides a detailed analysis and the results of the first 

research objective, traffic congestion detection from camera images.  
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CHAPTER 3. TRAFFIC CONGESTION DETECTION FROM CAMERA IMAGES 

3.1. Introduction 

Traditionally, traffic state estimation is conducted using point-based sensors, including inductive 

loops, piezoelectric sensors, and magnetic loops (Kotzenmacher et al. 2004). Recent advances in 

active infrared/laser radar sensors have led to these devices gradually replacing the traditional 

point-based sensors (Zhong and Liu 2007). Also, with the increasing use of navigation-based 

GPS devices, probe-based data are emerging as a cost-effective way to collect network-wide 

traffic data (Feng et al. 2014). Video monitoring and surveillance systems also are used for 

gathering real-time traffic data (Ozkurt and Camci 2009). Recent advances in image processing 

techniques have improved the accuracy of vision-based detection. Deep learning methods, such 

as CNNs, have been able to achieve human-level accuracy in image classification tasks (He et al. 

2016). The basic advantage of these methods is that they don’t require the identification of hand-

crafted features and hence can do away with the painstaking calibration tasks needed when using 

camera images for traffic state estimation (Bauza et al. 2010). 

In this study, camera images taken from different locations and orientations and in different 

weather conditions were used to successfully detect traffic congestion. Three different models 

were used for congestion detection tasks. Two of these were deep neural network models: 

DCNNs and YOLO. Because these models require time-consuming and costly GPU training, 

SVM, a shallow learning model, was used as a comparison to determine the advantages of using 

the deep models. 

The outline of this chapter is as follows. The present section provides a brief introduction and 

explains the importance of traffic congestion detection. The next section gives an overview of 

the proposed models used for traffic congestion determination. The third section provides a 

description of the data used in this study and the data preprocessing steps adopted for further 

analyses. The fourth section includes a discussion of the results obtained from the analyses, and 

the final section provides the conclusions form this study and recommendations for future work. 

This study was previously published in Transportation Research Record (Chakraborty et al. 

2018a). 

3.2. Methodology 

Traffic congestion detection from camera images can be conducted in two broad ways. With the 

first approach, the input image can be fed into an object recognition model to determine the 

number of vehicles in the image, and, when the number of vehicles exceeds a certain threshold, 

the image can be labeled as congested. With the second approach, the entire image can be 

classified as either congested or non-congested. In this study, the research team used the second 

approach because it is much simpler and does not require time-consuming manual annotation of 

individual vehicles. 
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Three different algorithms for the traffic congestion detection task were tested in this study: two 

based on deep neural networks, which require time-consuming GPU training, and one from the 

class of shallow learning algorithms, which does not require GPU training. The shallow 

algorithm was adopted primarily to determine the advantages, if any, of using a GPU for this 

classification task. The three algorithms used in this study were as follows: 

 Traditional DCNN 

 YOLO 

 SVM 

A detailed description of each of these algorithms is provided in the following sections. 

Deep Convolutional Neural Networks (DCCNs) 

Collectively, DCNNs are a state-of-the-art technique for object detection and image 

classification. In this study, we used a traditional CNN architecture consisting of convolution and 

pooling layers. The convolution architecture used in this study is shown in Table 1.  

Table 1. DCNN model architecture used 

Layer Kernel Stride Output Shape 

Input 
  

[400, 225, 3] 

Convolution 3×3 1 [400, 225, 32] 

Convolution 3×3 1 [398, 223, 32] 

Max Pooling 2×2 2 [199, 111, 32] 

Dropout 
  

[199, 111, 32] 

Convolution 3×3 1 [199, 111, 64] 

Convolution 3×3 1 [197, 109, 64] 

Max Pooling 2×2 2 [98, 54, 64] 

Dropout 
  

[98, 54, 64] 

Dense 
  

512 

Dropout 
  

512 

Dense 
  

2 

 

Because images from different cameras were used in this study, the input images were of 

different sizes, the majority being 800×450 pixels. The images were then resized to 400×225 

pixels to prevent memory allocation issues during the training of the model. Next, these images 

were fed into the model as two consecutive convolution layers 32×3×3 in size, followed by a 

max pooling layer 2×2 in size. This was followed by two additional convolution layers 64×3×3 

in size and then again a max pooling layer with a 2×2 filter. Each max pooling layer was 

followed by a dropout with a probability of 0.25 to prevent overfitting. Finally, two fully 

connected layers (dense) were used, the first one with 512 neurons and the final one with 2 

neurons corresponding to the binary classes (congested and non-congested). A batch size of 32 
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was used throughout the model, and leaky rectified linear units (ReLU) was used as an activation 

function.  

You Only Look Once (YOLO) 

YOLO uses a simple CNN architecture, shown in Table 2.  

Table 2. YOLO model architecture used 

Layer Kernel Stride Output Shape 

Input   [416, 416, 3] 

Convolution 3×3 1 [416, 416, 16] 

Max Pooling 2×2 2 [208, 208, 16] 

Convolution 3×3 1 [208, 208, 32] 

Max Pooling 2×2 2 [104, 104, 32] 

Convolution 3×3 1 [104, 104, 64] 

Max Pooling 2×2 2 [52, 52, 64] 

Convolution 3×3 1 [52, 52, 128] 

Max Pooling 2×2 2 [26, 26, 128] 

Convolution 3×3 1 [26, 26, 256] 

Max Pooling 2×2 2 [13, 13, 256] 

Convolution 3×3 1 [13, 13, 512] 

Max Pooling 2×2 1 [13, 13, 512] 

Convolution 3×3 1 [13, 13, 1024] 

Convolution 3×3 1 [13, 13, 1024] 

Convolution 1×1 1 [13, 13, 35] 

 

This neural network uses only standard layer types: convolution with a 3×3 kernel and max 

pooling with a 2×2 kernel. The very last convolutional layer has a 1×1 kernel, which serves to 

reduce the data to the shape 13×13×125. This 13×13 shape is the size of the grid into which the 

image is divided. There are 35 channels for every grid cell. These 35 channels represent the data 

for the bounding boxes and the class predictions, because each grid cell predicts five bounding 

boxes and a bounding box is described by seven data elements: 

 x, y, width, and height for the bounding box’s rectangle 

 Confidence score 

 Probability distribution over the two classes (congested and non-congested) 

The key implementation steps for YOLO are as follows: 

1. The input image is resized to 416×416 pixels.  

2. The image is passed through a CNN in a single pass.  

3. The CNN outputs a 13×13×k tensor describing the bounding boxes for the grid cells. The 

value of k is related to the number of classes as follows: k = (number of classes + 5) × 5.  
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4. The confidence scores for all bounding boxes are computed, and all boxes that fall below a 

predefined threshold are rejected.  

Because there are 13×13 = 169 grid cells and each cell predicts five bounding boxes, there are 

845 bounding boxes in total. Ideally, the majority of these boxes would have very low 

confidence scores. In this study, a confidence threshold of 45% was used for congestion 

detection.  

Support Vector Machine (SVM) 

SVM is one of the most widely used shallow algorithms for image classification. It solves a 

constrained quadratic optimization problem to classify data into different categories. The 

resulting optimal hyperplane is determined by maximizing the largest minimum distance to 

training examples to make the hyperplane least sensitive to noise. In this study, the Oriented 

FAST and Rotated BRIEF (ORB) (Rublee et al. 2011) feature detector was used to detect the key 

points in each image, whereby the features from accelerated segment test (FAST) algorithm was 

used to extract the key points, and the Harris corner distance was used to determine the top N 

points. The algorithm was run on the training dataset with 10-fold cross-validation to determine 

the optimal penalty parameter and kernel. This algorithm was run on Windows 7 with an Intel 

Core i7-4790 CPU with 8 GB of RAM. 

3.3. Data Description 

Two different data sources were used in this study: camera images and radar-based Wavetronix 

sensors. Camera images were obtained from 121 cameras from the Iowa DOT CCTV camera 

database spread across the Interstates and highways of Iowa. The database included data from 

the major cities of Iowa, i.e., Des Moines, Sioux City, Cedar Rapids, Council Bluffs, Davenport, 

and Iowa City. Images were extracted from the cameras at five-minute intervals from October 

2016 through March 2017 (six months), resulting in a total of 3.5 million images during the 

study period. The task of assigning a label (congested or non-congested) to an image consisted of 

four sub-tasks: 

 Associate each camera with a nearby Wavetronix sensor pair. 

 Smoothen the Wavetronix data. 

 Extract the details (camera name, timestamp) of each image. 

 Assign the label to the image based on sensor data. 

The details of each of these tasks are discussed next. 

Each camera was first associated with the two nearest Wavetronix sensors covering both 

directions of the freeway on which the camera was placed. If the sensor pair was located more 

than 0.5 miles away from the camera, then the particular camera was removed from the analysis. 

Here, the assumption was made that if sensors are located more than 0.5 miles away from the 
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camera, then the observation made from the camera might not match up with the sensors’ 

observations.  

The next step was to assign the traffic data from the sensor pair to each image. However, the 

sensor data obtained from Wavetronix in 20-second intervals included too much noise; therefore, 

we used wavelet smoothing to remove the noise. In this study, among the several families of 

wavelets that could be used, such as Haar, Daubechies, Biorthogonal, Symlets, Coiflets, Morlet, 

Mexican Hat, Meyer, etc., Daubechies extremal phase wavelets were used. Daubechies family 

wavelets are also known as dbN, where N refers to the number of vanishing moments. The 

higher the value of N, the longer the wavelet filter and the smoother the wavelet. Based on the 

data, db2 with level 6 was used to achieve a smooth curve-like filter that followed most of the 

variations in the original signal. A sample of the original and smoothed data is shown in Figure 

1. 

 

Figure 1. Original and smoothed occupancy using wavelet transform (db2 level 6) 

The next step was to extract the details of each image. The top of each image showed the details 

of the image (direction, camera name, and timestamp). Optical character recognition (OCR) was 

used to extract the details from each image, which were then matched with the corresponding 

sensor data based on the camera’s name and timestamp. 

After obtaining the smoothed Wavetronix data, timestamp, and camera name for each image, the 

traffic data obtained from the sensors were assigned to the images. The traffic data comprised 

speed, volume, and occupancy observed at 20-second intervals. To assign a label of congested or 

non-congested to the images, occupancy values were used, which are denoted by the percentage 

of the time the sensor is occupied by vehicles and which have a one-to-one mapping to traffic 

density or the number of vehicles in the unit distance. Persaud and Hall (1989) suggested that an 

occupancy of 20% or more should be considered congested, whereas an occupancy below that 

should be considered non-congested. Thus, if no congestion (occupancy < 20%) was observed in 

either direction of the Wavetronix pair, then the image was classified as non-congested; if 

congestion was visible in any particular direction or in both directions, it was labeled as 
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congested. The research team adopted this approach to do away with manual labeling of 

congested and non-congested images and to follow a uniform methodology for assigning labels 

to the images.  

Finally, 1,218 congested images and more than 3 million non-congested images were obtained. 

Due to class imbalance, 1,200 non-congested images were randomly chosen out of the 3 million 

images. This dataset consisting of a total of 2,418 images was then subdivided into a training set 

and a test set. The training set consisted of 1,400 images with equal proportions of congested and 

non-congested images. However, the YOLO approach to congestion detection requires manually 

annotating the region of congestion. For this purpose, 100 congested images were extracted from 

the training set and manually annotated with the congested region. The test set consisted of 1,018 

images, out of which 518 were congested and the rest were uncongested. Because sensor errors 

can occasionally cause misclassification of images, test set images were manually cross-checked 

before the final labels were assigned. However, no manual cross-checking of labels was 

performed for the training set because it was assumed that the algorithm itself should be able to 

determine the misclassifications, if any, in the training set.  

3.4. Results 

The performance of each of the three algorithms was trained on 1,400 training set images and 

tested on 1,018 test set images (518 congested and 500 non-congested). YOLO was trained and 

tested on an NVIDIA GTX 1080 Ti GPU with 8 GB of RAM, while DCNN was trained and 

tested on an NVIDIA Tesla K20m GPU with 4 GB of RAM. An Intel Core i7-4790 CPU with 8 

GB of RAM was used for training and testing SVM. The training times for YOLO, DCNN, and 

SVM were 22 hours, 26 minutes, and 50.4 seconds, respectively. The testing times for the three 

algorithms were 0.01, 0.01, and 0.03 seconds/frame, respectively. The testing time did not 

include the time required for developing the model; rather, it included only the time required to 

predict the class for each image. Because YOLO and DCNN are deep models, they had to be 

trained and tested using GPUs, which involved time-consuming and costly training compared to 

their shallow counterpart, SVM. The testing times for DCNN and YOLO were lower than for 

SVM, but they required that a GPU be used for testing. 

The performance of the algorithms was evaluated using the standard performance metrics of 

precision, recall, and accuracy (Equations 1, 2, and 3, respectively).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (3) 

When a congested image was correctly labeled (i.e., the predicted label was also congested), the 

result was classified as true positive (TP). Similarly, if a non-congested image was correctly 
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labeled as non-congested, the result was classified as true negative (TN). However, if the actual 

label was congested and the predicted label was non-congested, the result was classified as false 

negative (FN). Finally, if the actual label was non-congested and the predicted label was 

congested, the result was classified as false positive (FP). 

Some examples of true classifications and misclassifications obtained from each algorithm 

(YOLO, DCNN, and SVM) are shown in Figure 2. 
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Figure 2. Congestion detection classification examples: (a-c) true positives, (d-f) false positives, (g-h) false negatives, (j-l) true 

negatives 
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Examples of true positives, in which each algorithm correctly labeled congested images, are 

shown in Figure 2(a) through (c) (YOLO also gives the bounding box for the congested region). 

Examples of false positives, in which the algorithms misclassified non-congested images as 

congested, are shown in Figure 2(d) through (f). It can be seen that YOLO misclassified an 

image as a congested region because of a group of vehicles located far away from the camera 

during nighttime (Figure 2[d]), and vehicles on a bridge led to misclassification by DCNN 

(Figure 2[e]). SVM had misclassifications in adverse weather conditions (Figure 2[f]) because 

snow particles were detected as corners, which caused the image to be labeled as congested. 

Examples of false negatives, in which the algorithms failed to detect congested images correctly, 

are shown in Figure 2(g) through (i). Congestion quite distant from the camera led to 

misclassification by YOLO (Figure 2[g]), whereas DCNN failed to detect congestion in a single 

lane when the other lane was closed and hence empty (Figure 2[h]). Glare issues resulted in 

SVM misclassifications (Figure 2[i]). Finally, examples of true negatives, in which the 

algorithms correctly labeled non-congested images, are shown in Figure 2(j) through (l). 

The precision, recall, and accuracy values obtained for each algorithm are shown in Table 3.  

Table 3. Precision, recall, and accuracy values obtained for the three algorithms 

Method Precision (%) Recall (%) Accuracy (%) 

YOLO 88.6 94.3 91.4 

DCNN 86.9 93.9 90.2 

SVM 82.8 88.5 85.7 

 

YOLO achieved the highest precision, recall, and accuracy, followed closely by DCNN. Because 

YOLO achieved better accuracy compared to DCNN, we did not perform region-based CNN 

separately to determine the congested region of the results obtained from DCNN. YOLO, 

however, being a region-based classifier, gives the congested region of the image by default (see 

Figure 2[a] and Figure 2[d]). The accuracy obtained by SVM was comparatively lower (85.2%) 

than expected given the lower computation costs involved in such a shallow algorithm. In this 

context, it should be mentioned that a separate analysis using an ensemble of shallow learning 

algorithms (SVM with ORB, Shi-Tomasi, and Structured Edge Toolbox feature detectors) 

yielded an accuracy of 86.7% with the same dataset. In this study, however, we used only SVM 

with ORB to compare deep learning models to a standard shallow model.  

Sensitivity Analysis 

Sensitivity analysis was also performed to determine which factors might affect the performance 

of the congestion detection system developed in this study. The two factors that could influence 

the classification task were evaluated: first, the time of day the image was captured (daytime 

versus nighttime) and, second, camera resolution (blurring, rain, snow, and glare). The test 

database was then divided into four subgroups according to the combination of the two factors, 

as follows:  

 D-G: daytime, good resolution (436 images) 
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 N-G: nighttime, good resolution (147 images) 

 D-P: daytime, poor resolution (190 images) 

 N-P: nighttime, poor resolution (245 images) 

Receiver operating characteristics (ROC) curves were then used to compare the performance of 

each algorithm for each subgroup based on the true positive rate (TPR) and false positive rate  

(FPR), as defined in Equations (4) and (5), respectively:  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (5) 

For an efficient image classification model, the TPR should be higher than the corresponding 

FPR. However, for a system model with poor vision, when the sensitivity (TPR) increases, the 

model loses the ability to discriminate between congested and non-congested images, which 

makes the TPR directly proportional to the FPR. The ROC curves for each subgroup obtained 

from the three models—YOLO, DCNN, and SVM—are shown in Figure 3(a) through (c). The 

overall ROC curve for the three algorithms is shown in Figure 3(d). The area under each curve 

(AUC) is also provided for each case. 
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(a) (b) 

  
(c) (d) 

Figure 3. ROC curves under different prevalent conditions obtained from (a) YOLO, (b) 

DCNN, (c) SVM, and (d) all conditions combined for each algorithm 

For all three algorithms, the TPRs were higher than the corresponding FPRs irrespective of the 

prevailing conditions (daytime or nighttime, poor or good resolution). All of the algorithms 

performed well during the daytime, irrespective of the camera resolution. However, the AUCs 

were found to be lowest for poor-resolution images at night (N-P). Moreover, irrespective of the 

conditions, the AUCs from all algorithms for each subgroup were found to be mostly higher than 

0.90, except for the case of SVM under N-P conditions. This shows that the system works well 

even under challenging conditions. 
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In addition, ROC curves can be used by traffic management centers (TMCs) to choose an 

optimal threshold between TPR and FPR. Previous studies have shown that too many false calls 

are a major reason for the limited integration of automatic incident detection algorithms in 

TMCs. Hence, it is important for TMC personnel to know the accuracy that can be achieved with 

an algorithm given a particular FPR. For example, if a TMC wants to restrict the FPR to lower 

than 0.1, then the TPRs obtained by YOLO, DCNN, and SVM must be 0.92, 0.96, and 0.82, 

respectively, during good daytime (D-G) conditions. Obviously, the accuracy would be lower 

under poor camera conditions at night. TMC personnel can use the ROC curves to set optimal 

TPR and FPR thresholds based on their specific needs. 

Real-Time Implementation 

The congestion detection algorithms developed in this study can also be implemented online 

easily. With a test time of 0.01 seconds per image, the algorithms can be used to detect traffic 

congestion using approximately 1,000 cameras at an interval of every 10 seconds using a single 

GPU. Figure 4 shows an example of congestion detection by the DCNN algorithm on images 

extracted from a camera on a single day (October 27, 2017) at an interval of every 10 seconds.  
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(a) 

  
(b) (c) 

Figure 4. (a) Sensor occupancy data and congestion alerts from a camera on a particular 

date; (b-c) camera images of Callouts (i) and (ii) identified in (a) 

The congestion alerts from the camera are highlighted in Figure 4(a), along with the occupancy 

data obtained from nearest radar sensors in both directions of traffic. However, due to sensor 

issues, sensor data were missing from 8:51 a.m. to 12:57 p.m. Therefore, a two-vehicle crash 

reported at around 10:30 a.m. was missed by the sensor but was detected successfully by the 

camera. This example also shows that using multiple data sources (cameras, sensors, etc.) can 

increase the reliability of traffic state estimation. Camera images corresponding to Callouts (i) 

and (ii) in Figure 4(a) are provided in Figure 4(b) and (c) to show samples of camera images 

when congestion alerts are triggered. To eliminate false alerts, alerts are triggered only when 

congestion is detected on three consecutive frames at 10-second intervals (i.e., persistency test). 

Also, multiple alerts triggered within 5 minutes of each other are combined together to form a 

single continuous alert. These “signal smoothing” techniques help decrease false alert rates 

(FARs) and increase detection rates (DRs). Future studies can be done that implement better 

smoothing techniques like Fourier transforms or wavelet smoothing to determine the DR and 

FAR on a network of cameras. 
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3.5. Conclusions 

Recent advancements in machine vision algorithms and high-performance computing have 

improved image classification accuracy to a great extent. In this study, two such deep learning 

techniques, the traditional DCNN and YOLO models, were used to detect traffic congestion from 

camera images. SVM also was used for comparison and to determine the improvements that 

might be obtained using costly GPU techniques. To eliminate the time-consuming task of manual 

labeling and to maintain uniformity in congestion labeling, Wavetronix sensors near each camera 

were used to correctly identify congested images. For testing purposes, each image was also 

labeled manually to remove misclassifications due to sensor errors. 

The YOLO model achieved the highest accuracy of 91.2%, followed by DCNN with an accuracy 

of 90.2%; 85% of images were correctly classified by SVM. Congestion regions located far away 

from the camera, single-lane blockages, and glare issues were found to affect the accuracy of the 

models. To determine the sensitivity of the models to different camera configurations and light 

conditions, ROC curves were used. All of the algorithms were found to perform well in daytime 

conditions, but nighttime conditions were found to affect the accuracy of the vision system. 

However, for all conditions, the AUCs were found to be greater than 0.9 for the deep models. 

This result shows that the models perform well in challenging conditions as well. 

An example of the real-time implementation of congestion detection using the DCNN algorithm 

was also performed using a continuous set of images extracted from a camera. Simple 

persistence test methods were applied to reduce false alerts and smoothen the output signal. 

Future studies can look into different smoothing techniques (e.g., Fourier transform or wavelets) 

to denoise the output obtained from the algorithm and determine the overall detection rate and 

false alert rate on a network of cameras. Future studies can also be done using different model 

architectural designs to improve detection accuracies. Such models can also be used to determine 

different levels of congestion (high, medium, or low) and to more accurately determine traffic 

state (speed, volume, and occupancy). The congestion status obtained from the cameras can also 

be stored as historical data and used to determine traffic anomalies such as incidents. 
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CHAPTER 4. SEMI-SUPERVISED LEARNING APPROACH FOR FREEWAY 

INCIDENT DETECTION FROM VIDEOS  

4.1. Introduction 

Approaches to traffic incident detection from CCTV cameras can be broadly classified into two 

categories: explicit event recognition by supervised learning and unsupervised learning based on 

anomaly detection. While supervised techniques can, in general, provide better results in 

detection or classification tasks, the main hindrance in their application is the scarcity of 

supervised data samples and the cost of manually annotating and labeling the dataset. In 

particular, manually annotating vehicle tracks in a video stream is extremely labor-intensive, 

expensive, and not scalable.  

In this study, the research team established a new learning framework for traffic incident 

detection using recent advances in semi-supervised learning (Loog 2016). Via this framework, 

the “best of both worlds” can be achieved; only a small sample of normal vehicle tracks and the 

tracks of vehicles involved in an incident were manually annotated, and all other (unlabeled) 

vehicle tracks were used to improve the performance of the classification. Experimental results 

using traffic data collected from Iowa DOT cameras demonstrate that the framework can achieve 

superior performance compared to supervised learning techniques with a comparable number of 

labeled examples. This study was previously published in the proceedings of the 21st IEEE 

Conference on Intelligent Transportation Systems (Chakraborty et al. 2018b). 

4.2. Methodology 

Traffic incident detection from videos using trajectory information comprises three basic tasks: 

vehicle detection, vehicle tracking and trajectory formation, and trajectory classification. Each 

task is described in the following sections, with the primary focus of this study being trajectory 

classification using semi-supervised techniques. 

Vehicle Detection 

In recent years, the evolution of CNNs has resulted in significant improvements in the 

performance of object detection and classification. Various state-of-the-art object detection 

algorithms developed over the past few years have been based on CNN, including R-CNN 

(Girshick et al. 2014), Faster R-CNN (Ren et al. 2017), Mask R-CNN (He et al. 2017), 

deformable convolutional networks (ConvNets) (Dai et al. 2017), SSD (Liu et al. 2016), YOLO 

(Redmon et al. 2016), YOLOv2 (Redmon and Farhadi 2017), and YOLOv3 (Redmon and 

Farhadi 2018).  

In this study, the research team chose YOLOv3 (Redmon and Farhadi 2018) for vehicle 

detection primarily because of its fast performance with reasonable accuracy, which makes it 

suitable for real-time applications. Current object detection systems repurpose powerful CNN 

classifiers to perform detection. For example, to detect an object, these systems take a classifier 
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for that object and evaluate it at various locations and scales in the test image. In contrast, YOLO 

reframes object detection: instead of looking at a single image a thousand times to detect an 

object, YOLO only looks at an image once (but in a clever way) to perform the full detection 

pipeline (see Figure 5).  

 

Figure 5. Confidence score prediction of bounding boxes by YOLO, with colors and 

bounding box widths indicating confidence score probabilities 

A single convolutional network simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. This makes YOLO extremely fast and easy to generalize to 

different scenes.  

In this study, the YOLOv3-416 model trained on the Microsoft Common Objects in Context 

(COCO) dataset (Lin et al. 2014) was used for vehicle detection. Out of the 80 classes in the 

COCO dataset, the car, motorbike, bus, and truck classes were used for the vehicle detection 

module.  

Vehicle Tracking and Trajectory Formation 

Recent improvements in the performance of object detection have led tracking-by-detection to 

become the leading paradigm for MOT. In MOT, multiple objects are detected in each frame, 

with the aim being to associate the detections across frames in a video sequence. The data 

association can be performed in batch (Kim et al. 2015, Rezatofighi et al. 2015) or online 

(Bewley et al. n.d. Wojke et al. 2017).  

In this study, the SORT algorithm for vehicle tracking (Bewley et al., n.d.) was used. This is an 

online multi-object tracking algorithm that uses the Kalman filter and the Hungarian algorithm to 

address the data association problem. This tracker was chosen because of its reasonable 

performance in online, real-time settings. SORT updates at 260 Hz, making it suitable for real-

time implementation.  

The object tracker module outputs a sequence of bounding box coordinates, X-center (Xc) and Y-

center (Yc), for each unique vehicle ID across the frames, thereby forming a trajectory. Thus, a 

trajectory can be defined as a sequence of two-dimensional points, denoted as 
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1 2 3( , , )
ii j lenTR p p p p p   . Here, each 

jp  is a two-dimensional point representing the 

bounding box coordinates. The length 
ilen  of a trajectory can be different for different 

trajectories. Note that in this study only the bounding box center coordinates were used, but other 

features, such as bounding box appearance descriptors, can also be included. 

Semi-Supervised Trajectory Classification 

The aim of semi-supervised learning is to exploit easily available unlabeled data to improve the 

performance of supervised classifiers. However, it is not always the case that the semi-

supervised classifiers achieve lower error rates compared to their supervised counterparts. On the 

contrary, empirical studies have observed severely deteriorated performance for semi-supervised 

classifiers (Ben-David et al. 2008). Recently, Loog (2016) demonstrated how maximum 

likelihood (ML) can be used to improve classification performance in a semi-supervised setting.  

In this study, the problem of trajectory classification in a semi-supervised setting was addressed 

using contrastive pessimistic likelihood estimation (CPLE) based on ML estimation (Loog 

2016). The details of the CPLE method for semi-supervised classification is discussed in the 

following section, followed by a brief description of the traditional algorithms that were chosen 

for comparison. 

Contrastive Pessimistic Likelihood Estimation (CPLE) 

The two main concepts that form the core of CPLE are contrast and pessimism. The CPLE 

method is contrastive, meaning that the objective function explicitly controls the potential 

improvements of the semi-supervised classification over the supervised counterpart. CPLE is 

also pessimistic, which means that the unlabeled data are modeled to behave adversarially so that 

any semi-supervised learning mechanism benefits least from the unlabeled data. This makes 

CPLE resilient to whatever form the true (unobserved) labels of the unlabeled data take.  

For a K-class supervised classification, the log-likelihood objective function is given by 

     
1 1 1

| log | l |  g o ,
kNN K

i i ij

i k j

L X p x y p x k  
  

    (6) 

where, class k contains kN
 samples, 

kN

k K

N



 is the total samples, 

  
1

,
N

i i i
X x y




 is the set of 

labeled training pairs with 
d

ix   being the d-dimensional feature vectors, and 

 1,...,iy C K 
 are their corresponding labels. 

The supervised ML estimate, sup̂
, maximizes the above criterion: 
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 sup
ˆ arg max |L X



 
 (7) 

In this study, linear discriminant analysis (LDA) was chosen as the classifier, similar to the 

approach of Loog (2016). Here, the log-likelihood objective function is given by 
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where, 
 1 1,..., , ,..., ,k k     

, k  are the class priors, k  are the class means, and   is the 

class conditional covariance matrix. 

Let us define the fully labeled dataset by 

  
1

,
M

V i i i
X X u v


   (9) 

Then, opt̂  gives the parameter estimates of the classifier where the unlabeled data are also 

labeled. 

 opt
ˆ arg max | VL X



   (10) 

Since supervised parameters in sup̂  are estimated on a subset X of
VX , we have 

   sup opt
ˆ ˆ| |V VL X L X   (11) 

In semi-supervised setting, V is unobserved, but the labeled and unlabeled data (X and U) are 

available. The semi-supervised setting has more information compared to a supervised setting 

but less than the fully labeled case. Thus, 

     sup semi opt
ˆ ˆ ˆ| | |V V VL X L X L X     (12) 

Now, the supervised estimate is taken into account explicitly in order to construct a semi-

supervised classifier that can improve upon its supervised counterpart. 
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Before doing so, kiq
is defined to be the hypothetical posterior of observing label k given feature 

vector iu
. It can be also interpreted as the soft label for iu

. Since 
1kik C

q


 , the K-dimensional 

vector iq  can be stated as an element of the simplex 1K
 in

K : 

 1 1

1

|, , 1, 0
K

T K

i K K i i

i

q     



 
      

 
  (13) 

Provided that the posterior probabilities are defined, the log-likelihood on the complete dataset 

for any parameter vector   can be expressed as 

     
1 1

| , , | log , |
M K

ki i

i k

L X U q L X q p u k  
 

   (14) 

where the variable q on the left-hand side explicitly indicates the dependence on 
kiq . 

The relative improvement of the semi-supervised estimate   over the supervised solution for a 

given q can be expressed as 

     sup sup
ˆ ˆ, | , , | , , | , ,CL X U q L X U q L X U q      (15) 

This enables the extent of improvement of the semi-supervised estimates to be checked in terms 

of log-likelihood, defined as contrast. Since q is unknown, the most pessimistic solution can be 

chosen where it is assumed that the true (soft) labels achieve the worst case among all of the 

semi-supervised solutions and q is chosen such that the likelihood gain is minimized. Thus, the 

objective function can be written as 

   
1

sup sup
ˆ ˆ, | , min , | , ,

M
Kq

CPL X U CL X U q   


  (16) 

where 1 11

MM

K Ki 
   is the Cartesian product of M simplices. 

The objective function is strictly concave in   and linear in q. The heuristic to solve the 

maximization problem is based on alternating between the following two steps: 

Given a soft labeling q, the optimal LDA parameters are estimated by 

1ˆ

M

k kii
k

N q

N M
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The gradient   for q given   is calculated, and q is changed to q   , with step size   > 0. 

The step size   is decreased as one over the number of iterations, and the maximum number of 

iterations is restricted to 3,000. 

Baseline Algorithms 

The performance of the above CPLE-based framework for trajectory classification was 

compared to that of two baseline semi-supervised methods: self learning (Zhu and Goldberg 

2009) and label spreading (Zhou et al. 2004). Self learning combines information from unlabeled 

and labeled data to iteratively identify the labels for the unlabeled data. The labeled training set 

is enlarged on each iteration until the entire dataset is labeled. LDA (Balakrishnama and 

Ganapathiraju 1998) was used as the base model for self learning in the present study. Label 

spreading (Zhou et al. 2004), a modification of the traditional label propagation algorithm (Zhu 

and Ghahramani 2002), uses an affinity matrix based on normalized graph Laplacian. It uses soft 

clamping for labeling, and the loss function has regularization properties that make it robust to 

noise. Interested readers can refer to Bengio et al. (2006) for further details. Besides these two 

baseline algorithms, the results from the CPLE-based framework were also compared to those 

from its supervised counterpart obtained from the LDA classifiers trained on the labeled data. 

Feature Vector Generation 

The trajectories obtained from the vehicle tracker module are of variable length. However, the 

semi-supervised techniques described above require fixed-dimensional feature vectors. Hence, 

trajectory subsampling was first used to convert these variable-length trajectories to fixed-length 

trajectories, similar to Piciarelli et al. (2008). Each trajectory was subsampled to form a list of 

two-dimensional coordinates. Since the typical length of each trajectory was from 70 to 80, the 

research team heuristically chose 75 as the fixed length of each of these lists. Thus, each 

trajectory was defined as 
1 2 3 75... ...i jTR p p p p p , where 

jp  is the two-dimensional vector 

representing ,c c

j jX Y   . The feature vectors were normalized to zero mean, and principal 

component analysis was performed for dimension reduction. The research team found that 95% 

of the variance (explained by the top three principal components each for cX  and cY ) is 

sufficient, similar to Loog (2016). Finally, the top three principal components for cX  and cY  

were concatenated to form a six-dimensional vector representing the trajectory information for 

each vehicle ID. This six-dimensional feature vector was used for trajectory classification. 
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4.3. Data Description 

The primary source of data used in this study was the traffic incident videos obtained from the 

CCTV cameras installed by the Iowa DOT along the freeways of Iowa. The dataset consisted of 

151 traffic incident videos recorded from these cameras during the period from January 2016 

through December 2017 (24 months). Each video was of two-minutes in duration and was 

recorded at 30 frames per second, and each video clearly captured the onset of the traffic 

incident. The resolution of the videos varied from 800×480 pixels to 1920×1080 pixels, 

depending on the camera resolution. The traffic incidents were caused by car crashes or stalled 

vehicles. Of the 151 incident videos, 11 videos were manually annotated with the bounding 

boxes of the vehicles involved in the incident. A JavaScript-based video annotation tool 

(Bolkensteyn 2016) based on VATIC (Vondrick et al. 2013) was used for annotating the 

vehicles. This annotation resulted in a total of 15 unique trajectories of vehicles involved in 

incidents. These trajectories were then matched with the vehicle trajectories obtained from the 

object detection and tracking modules used in this study (YOLOv3 for vehicle detection and 

SORT for vehicle tracking). For each video frame, each manually annotated bounding box was 

matched with the detected bounding box with maximum overlap, with a minimum threshold of 

0.5 Intersection over Union (IoU). Each manually annotated incident trajectory was successfully 

matched with a unique trajectory obtained from the tracking algorithm. These trajectories are 

henceforth referred to as incident trajectories. The remaining trajectories in the 11 manually 

annotated incident videos were classified as normal trajectories. Fifteen such normal trajectories 

were randomly selected into the labeled dataset. Thus, the labeled dataset consisted of 15 normal 

trajectories and 15 incident trajectories.  

Ninety incident videos were randomly selected from the 151 incident videos to prepare the 

unlabeled dataset. The 11,685 trajectories obtained by the object detection and tracking 

algorithm from those 90 videos were included in the unlabeled dataset. The remaining 50 

incident videos were equally divided into validation and test datasets, with 25 incident videos in 

each set. Fifty baseline videos without any incidents were also randomly selected and divided 

equally into validation and test datasets. Thus, the validation and test datasets consisted of 50 

videos each, 25 of them being incident videos and the remaining 25 being normal baseline 

videos. The validation and test datasets consisted of 6,333 and 5,375 trajectories, respectively. 

4.4. Results 

The research team used the state-of-the-art object detection algorithm YOLOv3 for vehicle 

detection and SORT for vehicle tracking. The object detection and tracking process ran at around 

55 fps on an NVIDIA GTX 1080 Ti GPU, making it suitable for real-time performance. Figure 6 

shows sample images of the vehicles detected. 
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Figure 6. Sample images of vehicle detections 
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A sample image of the results of vehicle tracking is shown in Figure 7, where each color 

represents a unique trajectory. 

 

Figure 7. Sample vehicle tracking results 

The labeled trajectory dataset consisted of 15 incident trajectories and 15 normal trajectories. To 

determine the sensitivity of the algorithm to the number of labeled examples, each algorithm was 

tested for labeled sample sizes varying from 5 to 15 trajectories for each class (normal and 

incident). The efficacy of the proposed model (CPLE) along with that of the comparison models 

(label spreading, self learning, and supervised learning) were validated using the validation 

dataset, and the final accuracy was reported for the test dataset. To recall, the validation and test 

datasets consisted of 50 videos each, 25 of them being incident videos and remaining 25 being 

non-incident/baseline videos.  

A video was labelled as an incident video if at least one trajectory in the video was classified as 

an incident trajectory by the algorithm. The accuracy of the algorithm (ACC) is given by the 

number of correct classifications of incident videos (TPR) and baseline videos (TNR), as shown 

in Equations 20 through 22.  

TP
TPR

P
  (20) 

TN
TNR

N
  (21) 
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TP TN
ACC

P N





 (22) 

TP and TN refer to the respective numbers of correctly identified incident and baseline videos, 

while P and N refer to the respective total numbers of incident and baseline videos (25 each). 

Figure 8 shows the accuracy of each algorithm on the validation dataset for different numbers of 

labeled samples.  

 

Figure 8. Accuracy of the algorithms for different numbers of labeled samples 

The experiments were repeated 20 times, and the average accuracy of each algorithm was 

reported. It can be clearly seen in Figure 8 that CPLE exhibited superior performance compared 

to the other semi-supervised approaches and its supervised counterpart. On average, a 14% 

improvement was obtained when using CPLE compared to the second best algorithm (label 

spreading). The best model obtained from each algorithm was selected and applied to the test 

dataset. Table 4 shows the accuracy of each algorithm on the test dataset.  

Table 4. Accuracy of the algorithms on the test dataset 

Method TPR TNR ACC 

CPLE 0.83 0.92 0.88 

Label Spreading 0.60 0.94 0.77 

Self Learning 0.53 0.88 0.71 

Supervised 0.28 0.96 0.62 

 

Table 4 shows that while CPLE successfully identified a large majority of the incident videos (21 

of the 25 incident videos), the other algorithms failed to do so and performed poorly in terms of 
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TPR. However, since the majority of trajectories were normal trajectories, all algorithms 

performed well in correctly identifying the baseline videos. This result shows that the CPLE 

algorithm successfully extracted information regarding both incident and normal trajectories 

from the unlabeled dataset and hence achieved better performance than the other algorithms.  

Figure 9 shows a sample of incident and normal trajectories labeled by the CPLE algorithm for 

three incident videos (Video IDs 1, 2, and 3). 

 

Figure 9. Incident and normal trajectories labeled by the CPLE algorithm for three 

incident videos 

The x and y coordinates of the bounding box center of each vehicle across the video frames are 

shown in the figure. The CPLE algorithm successfully detected the incident trajectories in Video 

IDs 1 and 2 but failed to detect any incident trajectory in Video ID 3, primarily due to failed 

object detection caused by poor video quality. An example of a stalled vehicle detected across 

three frames is shown in Figure 10. 
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Figure 10. Sample images of stalled vehicle detected across three frames taken at one-

second intervals 

4.5. Conclusions 

State DOTs typically install a large number of CCTV cameras across freeways for surveillance 

purposes. However, it is virtually impossible to manually monitor such a large network of 

cameras constantly. Hence, there is a significant need to develop automatic incident detection 

algorithms that use the data from these cameras.  

Incident detection from cameras has typically been approached using either supervised or 

unsupervised algorithms. A major hindrance in the application of supervised techniques for 

incident detection is the lack of a sufficient number of incident videos and the labor-intensive, 

costly annotation tasks involved in the preparation of a labeled dataset. 

In this study, the research team approached the incident detection problem using semi-supervised 

techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation 

(CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle 

detection was performed using state-of-the-art deep learning-based YOLOv3, and SORT was 

used for tracking. Results showed that CPLE-based trajectory classification outperformed the 

traditional semi-supervised techniques (self learning and label spreading) and its supervised 

counterpart by a significant margin.   
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CHAPTER 5. CONCLUSION 

Automatic traffic anomaly detection has been identified to be crucial for the reduction of non-

recurrent congestion caused by incidents. In this study, the research team proposed an anomaly 

detection framework utilizing images and videos from CCTV cameras. State DOTs typically 

install a large number of CCTV cameras across freeways for surveillance purposes. However, it 

is virtually impossible to manually monitor such a large network of cameras constantly. Hence, 

there is a significant need to develop automatic incident detection algorithms that use the data 

from these cameras.  

This study was divided into two broad topics involving the detection of freeway traffic anomalies 

from cameras. The first research objective involved detecting traffic congestion from camera 

images. Two modern deep learning techniques, the traditional DCNN and YOLO models, were 

used to detect traffic congestion from camera images. The SVM model also was used for 

comparison and to determine the improvements that might be obtained using costly GPU 

techniques.  

To eliminate the time-consuming task of manual labeling and to maintain uniformity in 

congestion labeling, the research team used nearby Wavetronix sensors to correctly identify 

congested images. For testing purposes, each image was labeled manually to remove 

misclassifications due to sensor errors.  

The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with 

an accuracy of 90.2%; 85% of images were correctly classified using the SVM model. 

Congestion regions located far away from the camera, single-lane blockages, and glare issues 

were found to affect the accuracy of the models.  

To determine the sensitivity of the models to different camera configurations and light 

conditions, ROC curves were used. All of the algorithms were found to perform well in daytime 

conditions, but nighttime conditions were found to affect the accuracy of the vision system. 

However, for all conditions, the AUCs were found to be greater than 0.9 for the deep models. 

This result shows that the models performed well in challenging conditions as well. 

The second part of this study aimed at detecting traffic incidents from CCTV videos. Incident 

detection from cameras has typically been approached using either supervised or unsupervised 

algorithms. A major hindrance in the application of supervised techniques for incident detection 

is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation 

tasks involved in the preparation of labeled dataset.  

In this study, the research team approached the incident detection problem using semi-supervised 

techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation 

(CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle 

detection was performed using state-of-the-art deep learning-based YOLOv3, and SORT was 

used for tracking. Results showed that CPLE-based trajectory classification outperforms the 
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traditional semi-supervised techniques (self learning and label spreading) and its supervised 

counterpart by a significant margin. 

In future work, this framework can be extended to enable operation on a network of cameras to 

improve detection rates and reduce false alert rates in incident detection. While the proposed 

framework can work at about 50 fps, extensive research needs to be done if this framework is to 

be implemented at a statewide level involving hundreds or thousands of cameras.  

Additionally, the performance of integrated detection-and-tracking algorithms can also be 

explored to enable better trajectory estimation and thereby improve the accuracy of the 

algorithm. 
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